IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v61y2013i2p483-497.html
   My bibliography  Save this article

LP Bounds in an Interval-Graph Algorithm for Orthogonal-Packing Feasibility

Author

Listed:
  • Gleb Belov

    (Department of Mathematics, University of Duisburg-Essen, 47057 Duisburg, Germany)

  • Heide Rohling

    (OncoRay---National Center of Radiation Research in Oncology, Dresden University of Technology, 01307 Dresden, Germany)

Abstract

We consider the feasibility problem OPP (orthogonal packing problem) in higher-dimensional orthogonal packing: given a set of d -dimensional ( d (ge) 2) rectangular items, decide whether all of them can be orthogonally packed in the given rectangular container without rotation. The one-dimensional (1D) “bar” LP relaxation of OPP reduces the latter to a 1D cutting-stock problem where the packing of each stock bar represents a possible 1D stitch through an OPP layout. The dual multipliers of the LP provide us with another kind of powerful bounding information (conservative scales). We investigate how the set of possible 1D packings can be tightened using the overlapping information of item projections on the axes, with the goal to tighten the relaxation. We integrate the bar relaxation into an interval-graph algorithm for OPP, which operates on such overlapping relations. Numerical results on 2D and 3D instances demonstrate the efficiency of tightening leading to a speedup and stabilization of the algorithm.

Suggested Citation

  • Gleb Belov & Heide Rohling, 2013. "LP Bounds in an Interval-Graph Algorithm for Orthogonal-Packing Feasibility," Operations Research, INFORMS, vol. 61(2), pages 483-497, April.
  • Handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:483-497
    DOI: 10.1287/opre.1120.1150
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1120.1150
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1120.1150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    2. Manfred Padberg, 2000. "Packing small boxes into a big box," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(1), pages 1-21, September.
    3. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    4. Sándor P. Fekete & Jörg Schepers & Jan C. van der Veen, 2007. "An Exact Algorithm for Higher-Dimensional Orthogonal Packing," Operations Research, INFORMS, vol. 55(3), pages 569-587, June.
    5. P. C. Gilmore & R. E. Gomory, 1961. "A Linear Programming Approach to the Cutting-Stock Problem," Operations Research, INFORMS, vol. 9(6), pages 849-859, December.
    6. Nicolas Beldiceanu & Mats Carlsson & Sophie Demassey & Emmanuel Poder, 2011. "New filtering for the cumulative constraint in the context of non-overlapping rectangles," Annals of Operations Research, Springer, vol. 184(1), pages 27-50, April.
    7. Kenmochi, Mitsutoshi & Imamichi, Takashi & Nonobe, Koji & Yagiura, Mutsunori & Nagamochi, Hiroshi, 2009. "Exact algorithms for the two-dimensional strip packing problem with and without rotations," European Journal of Operational Research, Elsevier, vol. 198(1), pages 73-83, October.
    8. David Pisinger & Mikkel Sigurd, 2007. "Using Decomposition Techniques and Constraint Programming for Solving the Two-Dimensional Bin-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 19(1), pages 36-51, February.
    9. Silvano Martello & Michele Monaci & Daniele Vigo, 2003. "An Exact Approach to the Strip-Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 310-319, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jean-François Côté & Manuel Iori, 2018. "The Meet-in-the-Middle Principle for Cutting and Packing Problems," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 646-661, November.
    2. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    3. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    4. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    5. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2014. "An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints," Operations Research, INFORMS, vol. 62(5), pages 1126-1141, October.
    6. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iori, Manuel & de Lima, Vinícius L. & Martello, Silvano & Miyazawa, Flávio K. & Monaci, Michele, 2021. "Exact solution techniques for two-dimensional cutting and packing," European Journal of Operational Research, Elsevier, vol. 289(2), pages 399-415.
    2. Jean-François Côté & Mohamed Haouari & Manuel Iori, 2021. "Combinatorial Benders Decomposition for the Two-Dimensional Bin Packing Problem," INFORMS Journal on Computing, INFORMS, vol. 33(3), pages 963-978, July.
    3. Silva, Elsa & Oliveira, José Fernando & Silveira, Tiago & Mundim, Leandro & Carravilla, Maria Antónia, 2023. "The Floating-Cuts model: a general and flexible mixed-integer programming model for non-guillotine and guillotine rectangular cutting problems," Omega, Elsevier, vol. 114(C).
    4. Jean-François Côté & Mauro Dell'Amico & Manuel Iori, 2014. "Combinatorial Benders' Cuts for the Strip Packing Problem," Operations Research, INFORMS, vol. 62(3), pages 643-661, June.
    5. Krzysztof Fleszar, 2016. "An Exact Algorithm for the Two-Dimensional Stage-Unrestricted Guillotine Cutting/Packing Decision Problem," INFORMS Journal on Computing, INFORMS, vol. 28(4), pages 703-720, November.
    6. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2014. "An Exact Algorithm for the Two-Dimensional Orthogonal Packing Problem with Unloading Constraints," Operations Research, INFORMS, vol. 62(5), pages 1126-1141, October.
    7. Wei, Lijun & Hu, Qian & Lim, Andrew & Liu, Qiang, 2018. "A best-fit branch-and-bound heuristic for the unconstrained two-dimensional non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 270(2), pages 448-474.
    8. Marco Antonio Boschetti & Lorenza Montaletti, 2010. "An Exact Algorithm for the Two-Dimensional Strip-Packing Problem," Operations Research, INFORMS, vol. 58(6), pages 1774-1791, December.
    9. Kaiyuan Liu & Hongyu Zhang & Chong Wang & Hui Li & Yongquan Chen & Qiong Chen, 2023. "Robust Optimization for the Two-Dimensional Strip-Packing Problem with Variable-Sized Bins," Mathematics, MDPI, vol. 11(23), pages 1-22, November.
    10. Côté, J.F. & Guastaroba, G. & Speranza, M.G., 2017. "The value of integrating loading and routing," European Journal of Operational Research, Elsevier, vol. 257(1), pages 89-105.
    11. Jéssica Gabriela Almeida Cunha & Vinícius Loti de Lima & Thiago Alves Queiroz, 2020. "Grids for cutting and packing problems: a study in the 2D knapsack problem," 4OR, Springer, vol. 18(3), pages 293-339, September.
    12. de Queiroz, Thiago A. & Miyazawa, Flávio K., 2013. "Two-dimensional strip packing problem with load balancing, load bearing and multi-drop constraints," International Journal of Production Economics, Elsevier, vol. 145(2), pages 511-530.
    13. Wei, Lijun & Oon, Wee-Chong & Zhu, Wenbin & Lim, Andrew, 2011. "A skyline heuristic for the 2D rectangular packing and strip packing problems," European Journal of Operational Research, Elsevier, vol. 215(2), pages 337-346, December.
    14. Clausen, Tommy & Hjorth, Allan Nordlunde & Nielsen, Morten & Pisinger, David, 2010. "The off-line group seat reservation problem," European Journal of Operational Research, Elsevier, vol. 207(3), pages 1244-1253, December.
    15. Oliviana Xavier Nascimento & Thiago Alves Queiroz & Leonardo Junqueira, 2022. "A MIP-CP based approach for two- and three-dimensional cutting problems with staged guillotine cuts," Annals of Operations Research, Springer, vol. 316(2), pages 805-835, September.
    16. Ortmann, Frank G. & Ntene, Nthabiseng & van Vuuren, Jan H., 2010. "New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems," European Journal of Operational Research, Elsevier, vol. 203(2), pages 306-315, June.
    17. Leung, Stephen C.H. & Zhang, Defu & Sim, Kwang Mong, 2011. "A two-stage intelligent search algorithm for the two-dimensional strip packing problem," European Journal of Operational Research, Elsevier, vol. 215(1), pages 57-69, November.
    18. Baldacci, Roberto & Boschetti, Marco A., 2007. "A cutting-plane approach for the two-dimensional orthogonal non-guillotine cutting problem," European Journal of Operational Research, Elsevier, vol. 183(3), pages 1136-1149, December.
    19. Jean-François Côté & Michel Gendreau & Jean-Yves Potvin, 2020. "The Vehicle Routing Problem with Stochastic Two-Dimensional Items," Transportation Science, INFORMS, vol. 54(2), pages 453-469, March.
    20. Cintra, G.F. & Miyazawa, F.K. & Wakabayashi, Y. & Xavier, E.C., 2008. "Algorithms for two-dimensional cutting stock and strip packing problems using dynamic programming and column generation," European Journal of Operational Research, Elsevier, vol. 191(1), pages 61-85, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:61:y:2013:i:2:p:483-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.