IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v58y2010i4-part-1p933-947.html
   My bibliography  Save this article

Coordinated Multistage Scheduling of Parallel Batch-Processing Machines Under Multiresource Constraints

Author

Listed:
  • Payman Jula

    (Faculty of Business Administration, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada)

  • Robert C. Leachman

    (Department of Industrial Engineering and Operations Research, University of California, Berkeley, Berkeley, California 94720)

Abstract

Motivated by scheduling challenges of burn-in ovens in back-end semiconductor manufacturing, we propose a linear-programming-based algorithm, an integer-programming-based algorithm, and a heuristic-based algorithm to schedule nonhomogenous parallel batch machines with nonidentical job sizes and incompatible job families. We consider the common scheduling of consecutive steps that are linked together through secondary scarce resources. Our approach addresses the availability and compatibility of several resources required to make each process possible. The algorithms strive to meet short-term production targets expressed by product and step. The algorithms are shown to be effective and computationally efficient for this purpose. Taken together with previously developed methodology for the practical translation of target output schedules into short-term local production targets, this article suggests how a complex supply chain manufacturing system can be efficiently and effectively managed by decentralized local scheduling algorithms striving to meet short-term production targets that in turn ensure maintenance of an appropriate dynamic profile across production steps for work-in-process.

Suggested Citation

  • Payman Jula & Robert C. Leachman, 2010. "Coordinated Multistage Scheduling of Parallel Batch-Processing Machines Under Multiresource Constraints," Operations Research, INFORMS, vol. 58(4-part-1), pages 933-947, August.
  • Handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-1:p:933-947
    DOI: 10.1287/opre.1090.0788
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.1090.0788
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.1090.0788?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gregory Dobson & Ramakrishnan S. Nambimadom, 2001. "The Batch Loading and Scheduling Problem," Operations Research, INFORMS, vol. 49(1), pages 52-65, February.
    2. Chung-Yee Lee & Reha Uzsoy & Louis A. Martin-Vega, 1992. "Efficient Algorithms for Scheduling Semiconductor Burn-In Operations," Operations Research, INFORMS, vol. 40(4), pages 764-775, August.
    3. Payman Jula & Robert Leachman, 2008. "Coordinating decentralized local schedulers in complex supply chain manufacturing," Annals of Operations Research, Springer, vol. 161(1), pages 123-147, July.
    4. Dorit S. Hochbaum & Dan Landy, 1997. "Scheduling Semiconductor Burn-In Operations to Minimize Total Flowtime," Operations Research, INFORMS, vol. 45(6), pages 874-885, December.
    5. Robert C. Leachman & Jeenyoung Kang & Vincent Lin, 2002. "SLIM: Short Cycle Time and Low Inventory in Manufacturing at Samsung Electronics," Interfaces, INFORMS, vol. 32(1), pages 61-77, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. B.‐Y. Cheng & J.Y.‐T. Leung & K. Li & S.‐L. Yang, 2015. "Single batch machine scheduling with deliveries," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(6), pages 470-482, September.
    2. Jianxin Fang & Brenda Cheang & Andrew Lim, 2023. "Problems and Solution Methods of Machine Scheduling in Semiconductor Manufacturing Operations: A Survey," Sustainability, MDPI, vol. 15(17), pages 1-44, August.
    3. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    4. Saremi, Alireza & Jula, Payman & ElMekkawy, Tarek & Wang, G. Gary, 2013. "Appointment scheduling of outpatient surgical services in a multistage operating room department," International Journal of Production Economics, Elsevier, vol. 141(2), pages 646-658.
    5. Cheng, Ba-Yi & Leung, Joseph Y-T. & Li, Kai, 2017. "Integrated scheduling on a batch machine to minimize production, inventory and distribution costs," European Journal of Operational Research, Elsevier, vol. 258(1), pages 104-112.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fowler, John W. & Mönch, Lars, 2022. "A survey of scheduling with parallel batch (p-batch) processing," European Journal of Operational Research, Elsevier, vol. 298(1), pages 1-24.
    2. A H Kashan & B Karimi, 2008. "Scheduling a single batch-processing machine with arbitrary job sizes and incompatible job families: An ant colony framework," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1269-1280, September.
    3. Koh, Shie-Gheun & Koo, Pyung-Hoi & Kim, Dong-Chun & Hur, Won-Suk, 2005. "Scheduling a single batch processing machine with arbitrary job sizes and incompatible job families," International Journal of Production Economics, Elsevier, vol. 98(1), pages 81-96, October.
    4. Melouk, Sharif & Damodaran, Purushothaman & Chang, Ping-Yu, 2004. "Minimizing makespan for single machine batch processing with non-identical job sizes using simulated annealing," International Journal of Production Economics, Elsevier, vol. 87(2), pages 141-147, January.
    5. Ruyan Fu & Ji Tian & Shisheng Li & Jinjiang Yuan, 2017. "An optimal online algorithm for the parallel-batch scheduling with job processing time compatibilities," Journal of Combinatorial Optimization, Springer, vol. 34(4), pages 1187-1197, November.
    6. Xu, Jun & Wang, Jun-Qiang & Liu, Zhixin, 2022. "Parallel batch scheduling: Impact of increasing machine capacity," Omega, Elsevier, vol. 108(C).
    7. Gregory Dobson & Ramakrishnan S. Nambimadom, 2001. "The Batch Loading and Scheduling Problem," Operations Research, INFORMS, vol. 49(1), pages 52-65, February.
    8. Lin, Ran & Wang, Jun-Qiang & Oulamara, Ammar, 2023. "Online scheduling on parallel-batch machines with periodic availability constraints and job delivery," Omega, Elsevier, vol. 116(C).
    9. Yuan Gao & Jinjiang Yuan, 2019. "Unbounded parallel-batch scheduling under agreeable release and processing to minimize total weighted number of tardy jobs," Journal of Combinatorial Optimization, Springer, vol. 38(3), pages 698-711, October.
    10. Jolai, Fariborz, 2005. "Minimizing number of tardy jobs on a batch processing machine with incompatible job families," European Journal of Operational Research, Elsevier, vol. 162(1), pages 184-190, April.
    11. Li, Kai & Jia, Zhao-hong & Leung, Joseph Y.-T., 2015. "Integrated production and delivery on parallel batching machines," European Journal of Operational Research, Elsevier, vol. 247(3), pages 755-763.
    12. Damodaran, Purushothaman & Kumar Manjeshwar, Praveen & Srihari, Krishnaswami, 2006. "Minimizing makespan on a batch-processing machine with non-identical job sizes using genetic algorithms," International Journal of Production Economics, Elsevier, vol. 103(2), pages 882-891, October.
    13. Chakhlevitch, Konstantin & Glass, Celia A. & Kellerer, Hans, 2011. "Batch machine production with perishability time windows and limited batch size," European Journal of Operational Research, Elsevier, vol. 210(1), pages 39-47, April.
    14. Jun-Qiang Wang & Guo-Qiang Fan & Zhixin Liu, 2020. "Mixed batch scheduling on identical machines," Journal of Scheduling, Springer, vol. 23(4), pages 487-496, August.
    15. Bo Chen & Xiaotie Deng & Wenan Zang, 2004. "On-Line Scheduling a Batch Processing System to Minimize Total Weighted Job Completion Time," Journal of Combinatorial Optimization, Springer, vol. 8(1), pages 85-95, March.
    16. Tang, Lixin & Zhao, Yufang, 2008. "Scheduling a single semi-continuous batching machine," Omega, Elsevier, vol. 36(6), pages 992-1004, December.
    17. Potts, Chris N. & Kovalyov, Mikhail Y., 2000. "Scheduling with batching: A review," European Journal of Operational Research, Elsevier, vol. 120(2), pages 228-249, January.
    18. Sung, Chang Sup & Kim, Young Hwan & Yoon, Sang Hum, 2000. "A problem reduction and decomposition approach for scheduling for a flowshop of batch processing machines," European Journal of Operational Research, Elsevier, vol. 121(1), pages 179-192, February.
    19. Yuan Gao & Jinjiang Yuan & Zhigang Wei, 2019. "Unbounded parallel-batch scheduling with drop-line tasks," Journal of Scheduling, Springer, vol. 22(4), pages 449-463, August.
    20. Sup Sung, Chang & Hwan Kim, Young, 2003. "Minimizing due date related performance measures on two batch processing machines," European Journal of Operational Research, Elsevier, vol. 147(3), pages 644-656, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:58:y:2010:i:4-part-1:p:933-947. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.