IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i6p939-950.html
   My bibliography  Save this article

Global Stochastic Optimization with Low-Dispersion Point Sets

Author

Listed:
  • Sidney Yakowitz

    (Formerly Department of Systems and Industrial Engineering, University of Arizona, Tucson, Arizona)

  • Pierre L'Ecuyer

    (Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, H3C 3J7, Canada)

  • Felisa Vázquez-Abad

    (Département d'Informatique et de Recherche Opérationnelle, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, H3C 3J7, Canada)

Abstract

This study concerns a generic model-free stochastic optimization problem requiring the minimization of a risk function defined on a given bounded domain in a Euclidean space. Smoothness assumptions regarding the risk function are hypothesized, and members of the underlying space of probabilities are presumed subject to a large deviation principle; however, the risk function may well be nonconvex and multimodal. A general approach to finding the risk minimizer on the basis of decision/observation pairs is proposed. It consists of repeatedly observing pairs over a collection of design points. Principles are derived for choosing the number of these design points on the basis of an observation budget, and for allocating the observations between these points in both prescheduled and adaptive settings. On the basis of these principles, large-deviation type bounds of the minimizer in terms of sample size are established.

Suggested Citation

  • Sidney Yakowitz & Pierre L'Ecuyer & Felisa Vázquez-Abad, 2000. "Global Stochastic Optimization with Low-Dispersion Point Sets," Operations Research, INFORMS, vol. 48(6), pages 939-950, December.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:6:p:939-950
    DOI: 10.1287/opre.48.6.939.12393
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.6.939.12393
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.6.939.12393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Frank J. Matejcik & Barry L. Nelson, 1995. "Two-Stage Multiple Comparisons with the Best for Computer Simulation," Operations Research, INFORMS, vol. 43(4), pages 633-640, August.
    2. Pierre L'Ecuyer & Gaétan Perron, 1994. "On the Convergence Rates of IPA and FDC Derivative Estimators," Operations Research, INFORMS, vol. 42(4), pages 643-656, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sigurdur Ólafsson, 2004. "Two-Stage Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 5-27, March.
    2. Justin Boesel & Barry L. Nelson & Seong-Hee Kim, 2003. "Using Ranking and Selection to “Clean Up” after Simulation Optimization," Operations Research, INFORMS, vol. 51(5), pages 814-825, October.
    3. Arsham Hossein, 2007. "Monte Carlo Techniques for Parametric Finite Multidimensional Integral Equations," Monte Carlo Methods and Applications, De Gruyter, vol. 13(3), pages 173-195, August.
    4. Ullrich, Mario, 2018. "A lower bound for the dispersion on the torus," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 143(C), pages 186-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francis, Peter & Zhang, Guangming & Smilowitz, Karen, 2007. "Improved modeling and solution methods for the multi-resource routing problem," European Journal of Operational Research, Elsevier, vol. 180(3), pages 1045-1059, August.
    2. Wang, Honggang, 2012. "Retrospective optimization of mixed-integer stochastic systems using dynamic simplex linear interpolation," European Journal of Operational Research, Elsevier, vol. 217(1), pages 141-148.
    3. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    4. Sigurdur Ólafsson, 2004. "Two-Stage Nested Partitions Method for Stochastic Optimization," Methodology and Computing in Applied Probability, Springer, vol. 6(1), pages 5-27, March.
    5. Pierre L’Ecuyer & Florian Puchhammer & Amal Ben Abdellah, 2022. "Monte Carlo and Quasi–Monte Carlo Density Estimation via Conditioning," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1729-1748, May.
    6. Benhamou, Eric, 2000. "A generalisation of Malliavin weighted scheme for fast computation of the Greeks," LSE Research Online Documents on Economics 119105, London School of Economics and Political Science, LSE Library.
    7. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    8. Montero, Miquel & Kohatsu-Higa, Arturo, 2003. "Malliavin Calculus applied to finance," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 320(C), pages 548-570.
    9. Barry L. Nelson & David Goldsman, 2001. "Comparisons with a Standard in Simulation Experiments," Management Science, INFORMS, vol. 47(3), pages 449-463, March.
    10. R. C. M. Brekelmans & L. T. Driessen & H. J. M. Hamers & D. Hertog, 2008. "Gradient Estimation Using Lagrange Interpolation Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 136(3), pages 341-357, March.
    11. Hendrik Kohrs & Hermann Mühlichen & Benjamin R. Auer & Frank Schuhmacher, 2019. "Pricing and risk of swing contracts in natural gas markets," Review of Derivatives Research, Springer, vol. 22(1), pages 77-167, April.
    12. John Butler & Douglas J. Morrice & Peter W. Mullarkey, 2001. "A Multiple Attribute Utility Theory Approach to Ranking and Selection," Management Science, INFORMS, vol. 47(6), pages 800-816, June.
    13. Nakayama, Marvin K., 2007. "Fixed-width multiple-comparison procedures using common random numbers for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1330-1349, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:6:p:939-950. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.