IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v48y2000i1p173-176.html
   My bibliography  Save this article

Separability in Optimal Allocation

Author

Listed:
  • Bennet L. Fox

    (SIM-OPT Consulting, 872 Timber Lane Boulder, Colorado 80304)

Abstract

The optimal allocation for stratification, parameterized by the respective sampling strategy to use in each stratum, is derived directly from the notion of efficiency. Especially with simulation, there are often opportunities to maximize efficiency (myopically) within each stratum. To maximize efficiency globally, first maximize the efficiency of the sampling strategy for each stratum separately and then use the optimal allocation given these respective maximizers. Given any other allocation, maximizing the efficiency of the sampling strategy in each stratum separately does not give the highest efficiency attainable with that allocation except in degenerate cases. Given a class (C-script) of deterministic rounding strategies, the rounding of the (continuous) optimal allocation over (C-script), which maximizes efficiency, cannot be improved by a strategy that randomizes over (C-script).

Suggested Citation

  • Bennet L. Fox, 2000. "Separability in Optimal Allocation," Operations Research, INFORMS, vol. 48(1), pages 173-176, February.
  • Handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:173-176
    DOI: 10.1287/opre.48.1.173.12454
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.48.1.173.12454
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.48.1.173.12454?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter W. Glynn & Ward Whitt, 1992. "The Asymptotic Efficiency of Simulation Estimators," Operations Research, INFORMS, vol. 40(3), pages 505-520, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Giesecke, K. & Schwenkler, G., 2019. "Simulated likelihood estimators for discretely observed jump–diffusions," Journal of Econometrics, Elsevier, vol. 213(2), pages 297-320.
    2. Guay, François & Schwenkler, Gustavo, 2021. "Efficient estimation and filtering for multivariate jump–diffusions," Journal of Econometrics, Elsevier, vol. 223(1), pages 251-275.
    3. Michael B. Gordy & Sandeep Juneja, 2010. "Nested Simulation in Portfolio Risk Measurement," Management Science, INFORMS, vol. 56(10), pages 1833-1848, October.
    4. Giesecke, Kay & Schwenkler, Gustavo, 2018. "Filtered likelihood for point processes," Journal of Econometrics, Elsevier, vol. 204(1), pages 33-53.
    5. Sunggon Kim & Jisu Yu, 2023. "Stratified importance sampling for a Bernoulli mixture model of portfolio credit risk," Annals of Operations Research, Springer, vol. 322(2), pages 819-849, March.
    6. Weber, Florian & Schmid, Thomas & Pietz, Matthäus & Kaserer, Christoph, 2010. "Simulation-based valuation of project finance: does model complexity really matter?," CEFS Working Paper Series 2010-03, Technische Universität München (TUM), Center for Entrepreneurial and Financial Studies (CEFS).
    7. Boyle, Phelim & Broadie, Mark & Glasserman, Paul, 1997. "Monte Carlo methods for security pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 21(8-9), pages 1267-1321, June.
    8. Nanjing Jian & Shane G. Henderson, 2020. "Estimating the Probability that a Function Observed with Noise Is Convex," INFORMS Journal on Computing, INFORMS, vol. 32(2), pages 376-389, April.
    9. Georg Ch. Pflug & Philipp Thoma, 2016. "Efficient calculation of the Greeks for exponential Lévy processes: an application of measure valued differentiation," Quantitative Finance, Taylor & Francis Journals, vol. 16(2), pages 247-257, February.
    10. Andersson, Patrik & Kohatsu-Higa, Arturo & Yuasa, Tomooki, 2020. "Second order probabilistic parametrix method for unbiased simulation of stochastic differential equations," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5543-5574.
    11. Vladimir K. Kaishev & Dimitrina S. Dimitrova, 2009. "Dirichlet Bridge Sampling for the Variance Gamma Process: Pricing Path-Dependent Options," Management Science, INFORMS, vol. 55(3), pages 483-496, March.
    12. Bernd Heidergott & Taoying Farenhorst-Yuan, 2010. "Gradient Estimation for Multicomponent Maintenance Systems with Age-Replacement Policy," Operations Research, INFORMS, vol. 58(3), pages 706-718, June.
    13. Cliff C Kerr & Salvador Dura-Bernal & Tomasz G Smolinski & George L Chadderdon & David P Wilson, 2018. "Optimization by Adaptive Stochastic Descent," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-16, March.
    14. Nabil Kahalé, 2020. "Randomized Dimension Reduction for Monte Carlo Simulations," Management Science, INFORMS, vol. 66(3), pages 1421-1439, March.
    15. Paul Glasserman & Philip Heidelberger & Perwez Shahabuddin & Tim Zajic, 1999. "Multilevel Splitting for Estimating Rare Event Probabilities," Operations Research, INFORMS, vol. 47(4), pages 585-600, August.
    16. Cui, Zhenyu & Fu, Michael C. & Peng, Yijie & Zhu, Lingjiong, 2020. "Optimal unbiased estimation for expected cumulative discounted cost," European Journal of Operational Research, Elsevier, vol. 286(2), pages 604-618.
    17. Sandjai Bhulai & Taoying Farenhorst-Yuan & Bernd Heidergott & Dinard Laan, 2012. "Optimal balanced control for call centers," Annals of Operations Research, Springer, vol. 201(1), pages 39-62, December.
    18. Heidergott, Bernd & Vazquez-Abad, Felisa J. & Volk-Makarewicz, Warren, 2008. "Sensitivity estimation for Gaussian systems," European Journal of Operational Research, Elsevier, vol. 187(1), pages 193-207, May.
    19. Eric C. Ni & Dragos F. Ciocan & Shane G. Henderson & Susan R. Hunter, 2017. "Efficient Ranking and Selection in Parallel Computing Environments," Operations Research, INFORMS, vol. 65(3), pages 821-836, June.
    20. Jose Blanchet & Juan Li & Marvin K. Nakayama, 2019. "Rare-Event Simulation for Distribution Networks," Operations Research, INFORMS, vol. 67(5), pages 1383-1396, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:48:y:2000:i:1:p:173-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.