IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v43y1995i4p670-683.html
   My bibliography  Save this article

The Nonlinear Resource Allocation Problem

Author

Listed:
  • Kurt M. Bretthauer

    (Texas A&M University, College Station, Texas)

  • Bala Shetty

    (Texas A&M University, College Station, Texas)

Abstract

In this paper we study the nonlinear resource allocation problem, defined as the minimization of a convex function over one convex constraint and bounded integer variables. This problem is encountered in a variety of applications, including capacity planning in manufacturing and computer networks, production planning, capital budgeting, and stratified sampling. Despite its importance to these and other applications, the nonlinear resource allocation problem has received little attention in the literature. Therefore, we develop a branch-and-bound algorithm to solve this class of problems. First we present a general framework for solving the continuous-variable problem. Then we use this framework as the basis for our branch-and-bound method. We also develop reoptimization procedures and a heuristic that significantly improve the performance of the branch-and-bound algorithm. In addition, we show how the algorithm can be modified to solve nonconvex problems so that a concave objective function can be handled. The general algorithm is specialized for the applications mentioned above and computational results are reported for problems with up to 200 integer variables. A computational comparison with a 0, 1 linearization approach is also provided.

Suggested Citation

  • Kurt M. Bretthauer & Bala Shetty, 1995. "The Nonlinear Resource Allocation Problem," Operations Research, INFORMS, vol. 43(4), pages 670-683, August.
  • Handle: RePEc:inm:oropre:v:43:y:1995:i:4:p:670-683
    DOI: 10.1287/opre.43.4.670
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.43.4.670
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.43.4.670?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:43:y:1995:i:4:p:670-683. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.