IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v41y1993i5p880-902.html
   My bibliography  Save this article

Simulation Designs and Correlation Induction for Reducing Second-Order Bias in First-Order Response Surfaces

Author

Listed:
  • Joan M. Donohue

    (University of South Carolina, Columbia, South Carolina)

  • Ernest C. Houck

    (Virginia Polytechnic Institute and State University, Blacksburg, Virginia)

  • Raymond H. Myers

    (Virginia Polytechnic Institute and State University, Blacksburg, Virginia)

Abstract

Construction of simulation designs for the estimation of response surface metamodels is often based on optimal design theory. Underlying such designs is the assumption that the postulated model provides the correct representation of the simulated response. As a result, the location of design points and the assignment of pseudorandom number streams to these experiments are determined through the minimization of some function of the covariance matrix of the model coefficient estimators. In contrast, we assume that the postulated model may be incorrect. Attention is therefore directed to the development of simulation designs that offer protection against the bias due to possible model misspecification as well as error variance. The particular situation examined is the estimation of first-order response surface models in the presence of polynomials of order two. Traditional two-level factorial plans combined with one of three pseudorandom number assignment strategies define the simulation designs. Specification of the factor settings for these experimental plans are based on two integrated mean squared error criteria of particular interest in response surface studies. For both design criteria, comparisons of the optimal designs across the three assignment strategies are presented to assist experimenters in the selection of an appropriate simulation design.

Suggested Citation

  • Joan M. Donohue & Ernest C. Houck & Raymond H. Myers, 1993. "Simulation Designs and Correlation Induction for Reducing Second-Order Bias in First-Order Response Surfaces," Operations Research, INFORMS, vol. 41(5), pages 880-902, October.
  • Handle: RePEc:inm:oropre:v:41:y:1993:i:5:p:880-902
    DOI: 10.1287/opre.41.5.880
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.41.5.880
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.41.5.880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kleijnen, J.P.C. & Sanchez, S.M. & Lucas, T.W. & Cioppa, T.M., 2003. "A User's Guide to the Brave New World of Designing Simulation Experiments," Other publications TiSEM a6910d11-f9bc-4246-b1a7-2, Tilburg University, School of Economics and Management.
    2. Kleijnen, Jack P. C. & den Hertog, Dick & Angun, Ebru, 2004. "Response surface methodology's steepest ascent and step size revisited," European Journal of Operational Research, Elsevier, vol. 159(1), pages 121-131, November.
    3. Kleijnen, Jack P. C., 2005. "An overview of the design and analysis of simulation experiments for sensitivity analysis," European Journal of Operational Research, Elsevier, vol. 164(2), pages 287-300, July.
    4. Edouard Kujawski, 2014. "Interaction Effects in the Design of Computer Simulation Experiments for Architecting Systems‐of‐Systems," Systems Engineering, John Wiley & Sons, vol. 17(4), pages 426-441, December.
    5. Angun, M.E. & Gürkan, G. & den Hertog, D. & Kleijnen, J.P.C., 2002. "Response surface methodology revisited," Other publications TiSEM 32c35a04-3de9-4dee-a242-6, Tilburg University, School of Economics and Management.
    6. Angun, M.E., 2004. "Black box simulation optimization : Generalized response surface methodology," Other publications TiSEM 2548e953-54ce-44e2-8c5b-7, Tilburg University, School of Economics and Management.
    7. Batmaz, Inci & Tunali, Semra, 2003. "Small response surface designs for metamodel estimation," European Journal of Operational Research, Elsevier, vol. 145(2), pages 455-470, March.
    8. Kleijnen, J.P.C., 2004. "Design and Analysis of Monte Carlo Experiments," Discussion Paper 2004-17, Tilburg University, Center for Economic Research.
    9. Jack P. C. Kleijnen & Susan M. Sanchez & Thomas W. Lucas & Thomas M. Cioppa, 2005. "State-of-the-Art Review: A User’s Guide to the Brave New World of Designing Simulation Experiments," INFORMS Journal on Computing, INFORMS, vol. 17(3), pages 263-289, August.
    10. Safizadeh, M. Hossein, 2002. "Minimizing the bias and variance of the gradient estimate in RSM simulation studies," European Journal of Operational Research, Elsevier, vol. 136(1), pages 121-135, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:41:y:1993:i:5:p:880-902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.