IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v39y1991i6p903-916.html
   My bibliography  Save this article

Methods for Solving Nonlinear Equations Used in Evaluating Emergency Vehicle Busy Probabilities

Author

Listed:
  • Jeffrey Goldberg

    (University of Arizona, Tucson, Arizona)

  • Ferenc Szidarovszky

    (University of Arizona, Tucson, Arizona)

Abstract

In this paper we present two iterative methods for solving a model to evaluate busy probabilities for Emergency Medical Service (EMS) vehicles. The model considers location dependent service times and is an alternative to the mean service calibration method; a procedure, used with the Hypercube Model, to accommodate travel times and location-dependent service times. We use monotonicity arguments to prove that one iterative method always converges to a solution. A large computational experiment suggests that both methods work satisfactorily in EMS systems with low ambulance busy probabilities and the method that always converges to a solution performs significantly better in EMS systems with high busy probabilities.

Suggested Citation

  • Jeffrey Goldberg & Ferenc Szidarovszky, 1991. "Methods for Solving Nonlinear Equations Used in Evaluating Emergency Vehicle Busy Probabilities," Operations Research, INFORMS, vol. 39(6), pages 903-916, December.
  • Handle: RePEc:inm:oropre:v:39:y:1991:i:6:p:903-916
    DOI: 10.1287/opre.39.6.903
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.39.6.903
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.39.6.903?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sorensen, Paul & Church, Richard, 2010. "Integrating expected coverage and local reliability for emergency medical services location problems," Socio-Economic Planning Sciences, Elsevier, vol. 44(1), pages 8-18, March.
    2. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2011. "Optimizing large-scale emergency medical system operations on highways using the hypercube queuing model," Socio-Economic Planning Sciences, Elsevier, vol. 45(3), pages 105-117, September.
    3. Susana Baptista & Rui Oliveira, 2012. "A case study on the application of an approximated hypercube model to emergency medical systems management," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 20(4), pages 559-581, December.
    4. Sun Hoon Kim & Young Hoon Lee, 2016. "Iterative optimization algorithm with parameter estimation for the ambulance location problem," Health Care Management Science, Springer, vol. 19(4), pages 362-382, December.
    5. Susan Budge & Armann Ingolfsson & Erhan Erkut, 2009. "Technical Note---Approximating Vehicle Dispatch Probabilities for Emergency Service Systems with Location-Specific Service Times and Multiple Units per Location," Operations Research, INFORMS, vol. 57(1), pages 251-255, February.
    6. Marcos Singer & Patricio Donoso & Natalia Jadue, 2004. "Evaluacion De Las Oportunidades De Mejoramiento De La Logistica Directa De Emergencia," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 7(2), pages 179-209.
    7. Marcos Singer & Patricio Donoso & Alan Scheller-Wolf, 2008. "Una Introducción A La Teoría De Colas Aplicada A La Gestión De Servicios," Abante, Escuela de Administracion. Pontificia Universidad Católica de Chile., vol. 11(2), pages 93-120.
    8. Akbar Karimi & Michel Gendreau & Vedat Verter, 2018. "Performance Approximation of Emergency Service Systems with Priorities and Partial Backups," Transportation Science, INFORMS, vol. 52(5), pages 1235-1252, October.
    9. Xueping Li & Zhaoxia Zhao & Xiaoyan Zhu & Tami Wyatt, 2011. "Covering models and optimization techniques for emergency response facility location and planning: a review," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 74(3), pages 281-310, December.
    10. Iannoni, Ana Paula & Morabito, Reinaldo & Saydam, Cem, 2009. "An optimization approach for ambulance location and the districting of the response segments on highways," European Journal of Operational Research, Elsevier, vol. 195(2), pages 528-542, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:39:y:1991:i:6:p:903-916. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.