IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v27y1979i5p1011-1025.html
   My bibliography  Save this article

A Sequential Procedure for Determining the Length of a Steady-State Simulation

Author

Listed:
  • Averill M. Law

    (University of Wisconsin, Madison, Wisconsin)

  • John S. Carson

    (University of Wisconsin, Madison, Wisconsin)

Abstract

A common problem faced by simulators is that of constructing a confidence interval for the steady-state mean of a stochastic process. We have reviewed the existing procedures for this problem and found that all but one either produce confidence intervals with coverages which may be considerably lower than desired or have not been adequately tested. Thus, in many cases simulators will have more confidence in their results than is justified. In this paper we present a new sequential procedure based on the method of batch means for constructing a confidence interval with coverage close to the desired level. The procedure has the advantage that it does not explicitly require a stochastic process to have regeneration points. Empirical results for a large number of stochastic systems indicate that the new procedure performs quite well.

Suggested Citation

  • Averill M. Law & John S. Carson, 1979. "A Sequential Procedure for Determining the Length of a Steady-State Simulation," Operations Research, INFORMS, vol. 27(5), pages 1011-1025, October.
  • Handle: RePEc:inm:oropre:v:27:y:1979:i:5:p:1011-1025
    DOI: 10.1287/opre.27.5.1011
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.27.5.1011
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.27.5.1011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dashi I. Singham & Lee W. Schruben, 2012. "Finite-Sample Performance of Absolute Precision Stopping Rules," INFORMS Journal on Computing, INFORMS, vol. 24(4), pages 624-635, November.
    2. Bertsimas, Dimitris & Van Ryzin, Garrett., 1991. "A stochastic and dynamic vehicle routing problem in the Euclidean plane," Working papers 3286-91., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    3. Morgan, Lucy E. & Barton, Russell R., 2022. "Fourier trajectory analysis for system discrimination," European Journal of Operational Research, Elsevier, vol. 296(1), pages 203-217.
    4. Christos Alexopoulos & David Goldsman & Anup C. Mokashi & Kai-Wen Tien & James R. Wilson, 2019. "Sequest: A Sequential Procedure for Estimating Quantiles in Steady-State Simulations," Operations Research, INFORMS, vol. 67(4), pages 1162-1183, July.
    5. Vandin, Andrea & Giachini, Daniele & Lamperti, Francesco & Chiaromonte, Francesca, 2022. "Automated and distributed statistical analysis of economic agent-based models," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    6. Lada, Emily K. & Wilson, James R., 2006. "A wavelet-based spectral procedure for steady-state simulation analysis," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1769-1801, November.
    7. Ali Tafazzoli & James R. Wilson & Emily K. Lada & Natalie M. Steiger, 2011. "Performance of Skart: A Skewness- and Autoregression-Adjusted Batch Means Procedure for Simulation Analysis," INFORMS Journal on Computing, INFORMS, vol. 23(2), pages 297-314, May.
    8. Natalie M. Steiger & James R. Wilson, 2002. "An Improved Batch Means Procedure for Simulation Output Analysis," Management Science, INFORMS, vol. 48(12), pages 1569-1586, December.
    9. Souza, Gilvan C. & Wagner, Harvey M. & Whybark, D. Clay, 2001. "Evaluating focused factory benefits with queuing theory," European Journal of Operational Research, Elsevier, vol. 128(3), pages 597-610, February.
    10. Enver YĆ¼cesan, 1993. "Randomization tests for initialization bias in simulation output," Naval Research Logistics (NRL), John Wiley & Sons, vol. 40(5), pages 643-663, August.
    11. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2020. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," LEM Papers Series 2020/31, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    12. Kao, Chiang & Chen, Shih-Pin, 2006. "A stochastic quasi-Newton method for simulation response optimization," European Journal of Operational Research, Elsevier, vol. 173(1), pages 30-46, August.
    13. Song, Wheyming Tina & Chih, Mingchang, 2013. "Run length not required: Optimal-mse dynamic batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 229(1), pages 114-123.
    14. Andrea Vandin & Daniele Giachini & Francesco Lamperti & Francesca Chiaromonte, 2021. "Automated and Distributed Statistical Analysis of Economic Agent-Based Models," Papers 2102.05405, arXiv.org, revised Nov 2023.
    15. Borenstein, Denis, 2000. "A directed acyclic graph representation of routing manufacturing flexibility," European Journal of Operational Research, Elsevier, vol. 127(1), pages 78-93, November.
    16. Munoz, F.D. & Hobbs, B.F. & Watson, J.-P., 2016. "New bounding and decomposition approaches for MILP investment problems: Multi-area transmission and generation planning under policy constraints," European Journal of Operational Research, Elsevier, vol. 248(3), pages 888-898.
    17. Song, Wheyming T. & Chih, Mingchang, 2010. "Extended dynamic partial-overlapping batch means estimators for steady-state simulations," European Journal of Operational Research, Elsevier, vol. 203(3), pages 640-651, June.
    18. Bertsimas, Dimitris & Van Ryzin, Garrett., 1989. "The dynamic traveling repairman problem," Working papers 3036-89., Massachusetts Institute of Technology (MIT), Sloan School of Management.
    19. John R. Birge, 2023. "Uses of Sub-sample Estimates to Reduce Errors in Stochastic Optimization Models," Papers 2310.07052, arXiv.org, revised Jan 2025.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:27:y:1979:i:5:p:1011-1025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.