IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v23y1975i1p74-90.html
   My bibliography  Save this article

On the Set-Covering Problem: II. An Algorithm for Set Partitioning

Author

Listed:
  • Egon Balas

    (Carnegie-Mellon University, Pittsburgh, Pennsylvania)

  • Manfred Padberg

    (International Institute of Management, Berlin, West Germany)

Abstract

In an earlier paper [ Opns. Res. 20 1153–1161 (1972)] we proved that any feasible integer solution to the linear program associated with the equality-constrained set-covering problem can be obtained from any other feasible integer solution by a sequence of less than m pivots (where m is the number of equations), such that each solution generated in the sequence is integer. However, degeneracy makes it difficult to find a sequence of pivots leading to an integer optimum. In this paper we give a constructive characterization of adjacency relations between integer vertices of the feasible set that enables us to generate edges (all, if necessary) connecting a given integer vertex to adjacent integer vertices. This helps overcome the difficulties caused by degeneracy and leads to a class of algorithms, of which we discuss two.

Suggested Citation

  • Egon Balas & Manfred Padberg, 1975. "On the Set-Covering Problem: II. An Algorithm for Set Partitioning," Operations Research, INFORMS, vol. 23(1), pages 74-90, February.
  • Handle: RePEc:inm:oropre:v:23:y:1975:i:1:p:74-90
    DOI: 10.1287/opre.23.1.74
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.23.1.74
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.23.1.74?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2022. "Integral Column Generation for Set Partitioning Problems with Side Constraints," INFORMS Journal on Computing, INFORMS, vol. 34(4), pages 2313-2331, July.
    2. Rosat, Samuel & Quesnel, Frédéric & Elhallaoui, Issmail & Soumis, François, 2017. "Dynamic penalization of fractional directions in the integral simplex using decomposition: Application to aircrew scheduling," European Journal of Operational Research, Elsevier, vol. 263(3), pages 1007-1018.
    3. Omar Foutlane & Issmail Hallaoui & Pierre Hansen, 2022. "Distributed Integral Column Generation for Set Partitioning Problems," SN Operations Research Forum, Springer, vol. 3(2), pages 1-22, June.
    4. Sarin, Subhash C. & Aggarwal, Sanjay, 2001. "Modeling and algorithmic development of a staff scheduling problem," European Journal of Operational Research, Elsevier, vol. 128(3), pages 558-569, February.
    5. Adil Tahir & Guy Desaulniers & Issmail El Hallaoui, 2019. "Integral column generation for the set partitioning problem," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 713-744, December.
    6. Rönnberg, Elina & Larsson, Torbjörn, 2009. "Column generation in the integral simplex method," European Journal of Operational Research, Elsevier, vol. 192(1), pages 333-342, January.
    7. Andrei V. Nikolaev & Egor V. Klimov, 2024. "Finding a second Hamiltonian decomposition of a 4-regular multigraph by integer linear programming," Journal of Combinatorial Optimization, Springer, vol. 47(5), pages 1-31, July.
    8. Sujeevraja Sanjeevi & Saravanan Venkatachalam, 2021. "Robust flight schedules with stochastic programming," Annals of Operations Research, Springer, vol. 305(1), pages 403-421, October.
    9. Abdelouahab Zaghrouti & François Soumis & Issmail El Hallaoui, 2014. "Integral Simplex Using Decomposition for the Set Partitioning Problem," Operations Research, INFORMS, vol. 62(2), pages 435-449, April.
    10. Abdelouahab Zaghrouti & Issmail El Hallaoui & François Soumis, 2018. "Improved integral simplex using decomposition for the set partitioning problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 6(2), pages 185-206, June.
    11. Abdelouahab Zaghrouti & Issmail El Hallaoui & François Soumis, 2020. "Improving set partitioning problem solutions by zooming around an improving direction," Annals of Operations Research, Springer, vol. 284(2), pages 645-671, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:23:y:1975:i:1:p:74-90. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.