IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v21y1973i2p517-527.html
   My bibliography  Save this article

Maximal, Lexicographic, and Dynamic Network Flows

Author

Listed:
  • Edward Minieka

    (University of Illinois, Chicago, Illinois)

Abstract

This paper proves two properties of maximal network flows: (1) If there exist a maximal network flow with a given departure pattern at the sources and a maximal flow with a given arrival pattern at the sinks, then there exists a flow that has both this departure pattern at the sources and this arrival pattern at the sinks. (2) There exists a maximal dynamic network flow that simultaneously has a latest (earliest) departure schedule at the sources and an earliest (latest) arrival schedule at the sinks. The paper modifies Ford and Fulkerson's maximal dynamic flow algorithm to construct a maximal dynamic network flow with a latest departure schedule and an earliest arrival schedule.

Suggested Citation

  • Edward Minieka, 1973. "Maximal, Lexicographic, and Dynamic Network Flows," Operations Research, INFORMS, vol. 21(2), pages 517-527, April.
  • Handle: RePEc:inm:oropre:v:21:y:1973:i:2:p:517-527
    DOI: 10.1287/opre.21.2.517
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.21.2.517
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.21.2.517?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bruce Hoppe & Éva Tardos, 2000. "The Quickest Transshipment Problem," Mathematics of Operations Research, INFORMS, vol. 25(1), pages 36-62, February.
    2. Pursals, Salvador Casadesús & Garzón, Federico Garriga, 2009. "Optimal building evacuation time considering evacuation routes," European Journal of Operational Research, Elsevier, vol. 192(2), pages 692-699, January.
    3. Urmila Pyakurel & Tanka Nath Dhamala, 2017. "Continuous Dynamic Contraflow Approach for Evacuation Planning," Annals of Operations Research, Springer, vol. 253(1), pages 573-598, June.
    4. Urmila Pyakurel & Hari Nandan Nath & Stephan Dempe & Tanka Nath Dhamala, 2019. "Efficient Dynamic Flow Algorithms for Evacuation Planning Problems with Partial Lane Reversal," Mathematics, MDPI, vol. 7(10), pages 1-29, October.
    5. Hong Zheng & Yi-Chang Chiu & Pitu B. Mirchandani, 2015. "On the System Optimum Dynamic Traffic Assignment and Earliest Arrival Flow Problems," Transportation Science, INFORMS, vol. 49(1), pages 13-27, February.
    6. Ryo Yamamoto & Atsushi Takizawa, 2019. "Partitioning Vertical Evacuation Areas in Umeda Underground Mall to Minimize the Evacuation Completion Time," The Review of Socionetwork Strategies, Springer, vol. 13(2), pages 209-225, October.
    7. Pyakurel, Urmila & Khanal, Durga Prasad & Dhamala, Tanka Nath, 2023. "Abstract network flow with intermediate storage for evacuation planning," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1178-1193.
    8. Nadine Baumann & Martin Skutella, 2009. "Earliest Arrival Flows with Multiple Sources," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 499-512, May.
    9. Urmila Pyakurel & Stephan Dempe, 2020. "Network Flow with Intermediate Storage: Models and Algorithms," SN Operations Research Forum, Springer, vol. 1(4), pages 1-23, December.
    10. Natashia Boland & Mike Hewitt & Luke Marshall & Martin Savelsbergh, 2017. "The Continuous-Time Service Network Design Problem," Operations Research, INFORMS, vol. 65(5), pages 1303-1321, October.
    11. Urmila Pyakurel & Hari Nandan Nath & Tanka Nath Dhamala, 2019. "Partial contraflow with path reversals for evacuation planning," Annals of Operations Research, Springer, vol. 283(1), pages 591-612, December.
    12. Tanka Nath Dhamala & Urmila Pyakurel & Ram Chandra Dhungana, 2018. "Abstract Contraflow Models and Solution Procedures for Evacuation Planning," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 10(4), pages 89-100, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:21:y:1973:i:2:p:517-527. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.