IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v17y1969i3p425-436.html
   My bibliography  Save this article

A Computationally Compact Sufficient Condition for Constrained Minima

Author

Listed:
  • G. Reklaitis

    (Stanford University, Stanford, California)

  • D. J. Wilde

    (Stanford University, Stanford, California)

Abstract

This paper derives a second-order sufficient condition in differential form for a local minimum of the nonconvex nonlinear programming problem under the requirement of twice continuous differentiability. The condition is complementary to the differential form of the Kuhn-Tucker necessary conditions and involves the positive definiteness of a matrix of constrained second derivatives of rank and order equal to the number of variables having vanishing first constrained derivatives. By using linear information, the condition avoids consideration of the entire second-order portion of the Taylor expansion of the Lagrangian. An example illustrating the test is included.

Suggested Citation

  • G. Reklaitis & D. J. Wilde, 1969. "A Computationally Compact Sufficient Condition for Constrained Minima," Operations Research, INFORMS, vol. 17(3), pages 425-436, June.
  • Handle: RePEc:inm:oropre:v:17:y:1969:i:3:p:425-436
    DOI: 10.1287/opre.17.3.425
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.17.3.425
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.17.3.425?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:17:y:1969:i:3:p:425-436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.