IDEAS home Printed from https://ideas.repec.org/a/inm/oropre/v13y1965i5p712-733.html
   My bibliography  Save this article

Dynamic Inference

Author

Listed:
  • Ronald A. Howard

    (Stanford University, Stanford, California)

Abstract

We consider a model for dynamic uncertain processes that affords considerably more generality of formulation than do Markovian models or their derivatives. The underlying statistical parameters of a stochastic process that produces observable outputs are themselves allowed to change at times generated by another stochastic process. We would like to make probability assignments to future outputs of the process, given only the past outputs. We develop the inferential relations for the case where the changes of parameters are governed by a renewal process, and where the process that generates observables depends only on its present parameters. We illustrate these results using an example with a Bernoulli observable distribution, a beta parameter distribution, and a geometric distribution for for the time between parameter changes. The numerical results indicate a complexity of behavior that challenges intuition. Possible applications of the general class of dynamic inference models range from marketing to anti-submarine warfare.

Suggested Citation

  • Ronald A. Howard, 1965. "Dynamic Inference," Operations Research, INFORMS, vol. 13(5), pages 712-733, October.
  • Handle: RePEc:inm:oropre:v:13:y:1965:i:5:p:712-733
    DOI: 10.1287/opre.13.5.712
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/opre.13.5.712
    Download Restriction: no

    File URL: https://libkey.io/10.1287/opre.13.5.712?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter S. Fader & Bruce G. S. Hardie & Chun-Yao Huang, 2004. "A Dynamic Changepoint Model for New Product Sales Forecasting," Marketing Science, INFORMS, vol. 23(1), pages 50-65, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:oropre:v:13:y:1965:i:5:p:712-733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.