Author
Listed:
- Omar Besbes
(Graduate School of Business, Columbia University, New York, New York 10027)
- Vineet Goyal
(Department of IEOR, Columbia University, New York, New York 10027)
- Garud Iyengar
(Department of IEOR, Columbia University, New York, New York 10027)
- Raghav Singal
(Tuck School of Business, Dartmouth College, Hanover, New Hampshire 03755)
Abstract
Problem definition : Motivated by the debate around workers’ welfare in the gig economy, we propose a framework to evaluate current practices and possible alternatives. We study a setting in which customers seek service from workers and a platform facilitates such matches over the course of the day. The platform allocates time slots to workers using an allocation policy, and the workers are strategic agents (with respect to “when to work”) who maximize their expected utility that depends on their preferred times to work, the allocated slots, and the total availability time. The platform seeks to ensure that a sufficient number of workers is available to satisfy demand, whereas the workers aim to maximize their wage-driven utility. Methodology/results : We evaluate policies on two dimensions critical to any firm: the supply of workers across the day, and the effective wages of workers. We illustrate that several families of currently deployed policies have serious limitations. We find these limitations exist because the policies do not let workers fully express their preferences and/or cannot account for heterogeneity in such preferences. We propose a new allocation policy and establish strong performance guarantees with respect to both the workers’ supply and effective wages. The policy is simple and fully leverages the market information to reach better market outcomes. We supplement our theory with numerical experiments in the context of ride-hailing calibrated on various New York City data sets that illustrate performance across a range of markets. Managerial implications : We highlight a fundamental inefficiency of policies currently deployed that limit workers’ ability to express their preferences. By allowing workers to express their temporal preferences, and by judiciously prioritizing “full-time” workers over “part-time” workers, we can obtain a potentially significant Pareto improvement, maintaining (or even increasing) workers’ supply while increasing their effective wages.
Suggested Citation
Omar Besbes & Vineet Goyal & Garud Iyengar & Raghav Singal, 2024.
"Workforce Scheduling with Heterogeneous Time Preferences: Effective Wages and Workers’ Supply,"
Manufacturing & Service Operations Management, INFORMS, vol. 26(5), pages 1768-1786, September.
Handle:
RePEc:inm:ormsom:v:26:y:2024:i:5:p:1768-1786
DOI: 10.1287/msom.2022.0414
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:26:y:2024:i:5:p:1768-1786. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.