Author
Listed:
- Christian Mandl
(Logistics & Supply Chain Management, TUM School of Management, Technische Universität München, 80333 Munich, Germany)
- Stefan Minner
(Logistics & Supply Chain Management, TUM School of Management, Technische Universität München, 80333 Munich, Germany)
Abstract
Problem definition : We study a practice-motivated multiperiod stochastic commodity procurement problem under price uncertainty with forward and spot purchase options. Existing approaches are based on parametric price models, which inevitably involve price model misspecification and generalization error. Academic/practical relevance : We propose a nonparametric, data-driven approach (DDA) that is consistent with the optimal procurement policy structure but without requiring the a priori specification and estimation of stochastic price processes. In addition to historical prices, DDA is able to leverage real-time feature data, such as economic indicators, in solving the problem. Methodology : This paper provides a framework for prescriptive analytics in dynamic commodity procurement, with optimal purchase policies learned directly from data as functions of features, via mixed integer linear programming (MILP) under cost minimization objectives. Hence, DDA focuses on optimal decisions rather than optimal predictions. Furthermore, we combine optimization with regularization from machine learning (ML) to extract decision-relevant data from noise. Results : Based on numerical experiments and empirical data, we show that there is a significant value of feature data for commodity procurement when procurement policy parameters are learned as functions of features. However, overfitting deteriorates the performance of data-driven solutions, which asks for ML extensions to improve out-of-sample generalization. Compared with an internal best-practice benchmark, DDA generates savings of on average 9.1 million euros per annum (4.33%) for 10 years of backtesting. Managerial implications : A practical benefit of DDA is that it yields simple but optimally structured decision rules that are easy to interpret and easy to operationalize. Furthermore, DDA is generalizable and applicable to many other procurement settings.
Suggested Citation
Christian Mandl & Stefan Minner, 2023.
"Data-Driven Optimization for Commodity Procurement Under Price Uncertainty,"
Manufacturing & Service Operations Management, INFORMS, vol. 25(2), pages 371-390, March.
Handle:
RePEc:inm:ormsom:v:25:y:2023:i:2:p:371-390
DOI: 10.1287/msom.2020.0890
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:25:y:2023:i:2:p:371-390. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.