Author
Listed:
- Wei Zhang
(Faculty of Business and Economics, The University of Hong Kong, Hong Kong SAR, China)
- Yifan Dou
(School of Management, Fudan University, Shanghai 200433, China)
Abstract
Problem definition : We study how the government should design the subsidy policy to promote electric vehicle (EV) adoptions effectively and efficiently when there might be a spatial mismatch between the supply and demand of charging piles. Academic/practical relevance : EV charging infrastructures are often built by third-party service providers (SPs). However, profit-maximizing SPs might prefer to locate the charging piles in the suburbs versus downtown because of lower costs although most EV drivers prefer to charge their EVs downtown given their commuting patterns and the convenience of charging in downtown areas. This conflict of spatial preferences between SPs and EV drivers results in high overall costs for EV charging and weak EV adoptions. Methodology : We use a stylized game-theoretic model and compare three types of subsidy policies: (i) subsidizing EV purchases, (ii) subsidizing SPs based on pile usage, and (iii) subsidizing SPs based on pile numbers. Results : Subsidizing EV purchases is effective in promoting EV adoptions but not in alleviating the spatial mismatch. In contrast, subsidizing SPs can be more effective in addressing the spatial mismatch and promoting EV adoptions, but uniformly subsidizing pile installation can exacerbate the spatial mismatch and backfire. In different situations, each policy can emerge as the best, and the rule to determine which side (SPs versus EV buyers) to subsidize largely depends on cost factors in the charging market rather than the EV price or the environmental benefits. Managerial implications : A “jigsaw-piece rule” is recommended to guide policy design: subsidizing SPs is preferred if charging is too costly or time consuming, and subsidizing EV purchases is preferred if charging is sufficiently fast and easy. Given charging costs that are neither too low nor too high, subsidizing SPs is preferred only if pile building downtown is moderately more expensive than pile building in the suburbs.
Suggested Citation
Wei Zhang & Yifan Dou, 2022.
"Coping with Spatial Mismatch: Subsidy Design for Electric Vehicle and Charging Markets,"
Manufacturing & Service Operations Management, INFORMS, vol. 24(3), pages 1595-1610, May.
Handle:
RePEc:inm:ormsom:v:24:y:2022:i:3:p:1595-1610
DOI: 10.1287/msom.2021.1017
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormsom:v:24:y:2022:i:3:p:1595-1610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.