Author
Listed:
- Xi Chen
(Columbia University, New York, New York 10027)
- Christian Kroer
(Columbia University, New York, New York 10027)
- Rachitesh Kumar
(Columbia University, New York, New York 10027)
Abstract
Budget constraints are ubiquitous in online advertisement auctions. To manage these constraints and smooth out the expenditure across auctions, the bidders (or the platform on behalf of them) often employ pacing: each bidder is assigned a pacing multiplier between zero and one, and her bid on each item is multiplicatively scaled down by the pacing multiplier. This naturally gives rise to a game in which each bidder strategically selects a multiplier. The appropriate notion of equilibrium in this game is known as a pacing equilibrium. In this work, we show that the problem of finding an approximate pacing equilibrium is PPAD-complete for second-price auctions. This resolves an open question of Conitzer et al. [Conitzer V, Kroer C, Sodomka E, Stier-Moses NE (2022a) Multiplicative pacing equilibria in auction markets. Oper. Res . 70(2):963–989]. As a consequence of our hardness result, we show that the tâtonnement-style budget-management dynamics introduced by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540] are unlikely to converge efficiently for repeated second-price auctions. This disproves a conjecture by Borgs et al. [Borgs C, Chayes J, Immorlica N, Jain K, Etesami O, Mahdian M (2007) Dynamics of bid optimization in online advertisement auctions. Proc. 16th Internat. Conf. World Wide Web (ACM, New York), 531–540], under the assumption that the complexity class PPAD is not equal to P. Our hardness result also implies the existence of a refinement of supply-aware market equilibria which is hard to compute with simple linear utilities.
Suggested Citation
Xi Chen & Christian Kroer & Rachitesh Kumar, 2024.
"The Complexity of Pacing for Second-Price Auctions,"
Mathematics of Operations Research, INFORMS, vol. 49(4), pages 2109-2135, November.
Handle:
RePEc:inm:ormoor:v:49:y:2024:i:4:p:2109-2135
DOI: 10.1287/moor.2022.0009
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormoor:v:49:y:2024:i:4:p:2109-2135. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.