Author
Listed:
- Xuan Bi
(Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)
- Alok Gupta
(Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)
- Mochen Yang
(Carlson School of Management, University of Minnesota, Minneapolis, Minnesota 55455)
Abstract
Limited access to large-scale data is a key obstacle to building machine learning (ML) applications in practice, partly due to a reluctance of information exchange among data owners out of privacy and data security concerns. To address this “information silo” problem, federated learning (FL) techniques have been proposed to enable decentralized model training via an orchestrating central server and have received increasing attention in several industries (including healthcare and finance). Despite its superior privacy protection property, adoption of FL is limited by a lack of systematic understanding of its underlying economics. In this paper, we take an analytical approach to answer two questions: (1) when do data owners prefer to form a FL partnership over building ML models by themselves and (2) how can different contractual mechanisms be used to promote repeated contributions to FL (the cooperative outcome that benefits all participants). We formulate an iterated prisoner’s dilemma (IPD) model that accounts for unique FL characteristics, including the specification of the payoff matrix and the involvement of a central server to sanction noncooperation. We find that partnership formation requires participants to be not too forward-looking in temporal preferences, which is contrary to the conventional wisdom in IPD. Furthermore, to promote repeated contributions, it is insufficient to only rely on penalties imposed by the central server or by participants for noncooperation, but a combination of both is enough. Our work advances theoretical understanding of the economics of FL and provides prescriptive insights that can inform FL participant selection and contract design.
Suggested Citation
Xuan Bi & Alok Gupta & Mochen Yang, 2024.
"Understanding Partnership Formation and Repeated Contributions in Federated Learning: An Analytical Investigation,"
Management Science, INFORMS, vol. 70(8), pages 4974-4994, August.
Handle:
RePEc:inm:ormnsc:v:70:y:2024:i:8:p:4974-4994
DOI: 10.1287/mnsc.2023.00611
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:70:y:2024:i:8:p:4974-4994. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.