IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v51y2005i5p679-694.html
   My bibliography  Save this article

Analyzing Bioterror Response Logistics: The Case of Anthrax

Author

Listed:
  • David L. Craft

    (Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts 02114)

  • Lawrence M. Wein

    (Graduate School of Business, Stanford University, Stanford, California 94306)

  • Alexander H. Wilkins

    (Scientific Computing and Computational Mathematics, Stanford University, Stanford, California 94306)

Abstract

To aid in understanding how best to respond to a bioterror anthrax attack, we analyze a system of differential equations that includes an atmospheric release model, a spatial array of biosensors, a dose-response model, a disease progression model, and a set of spatially distributed tandem queues for distributing antibiotics and providing hospital care. We derive approximate closed-form expressions for the number of deaths as a function of key parameters and management levers, including the size of the attack, the time at which the attack is detected via symptomatic patients, the number of days to distribute antibiotics, the efficacy (both for treatment and prevention) of antibiotics, the prophylactic antibiotic distribution strategy, the prioritization of the antibiotics queue, and the detection limit, deployment density, and delay time of biosensors.

Suggested Citation

  • David L. Craft & Lawrence M. Wein & Alexander H. Wilkins, 2005. "Analyzing Bioterror Response Logistics: The Case of Anthrax," Management Science, INFORMS, vol. 51(5), pages 679-694, May.
  • Handle: RePEc:inm:ormnsc:v:51:y:2005:i:5:p:679-694
    DOI: 10.1287/mnsc.1040.0348
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.1040.0348
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.1040.0348?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nathaniel Hupert & Alvin I. Mushlin & Mark A. Callahan, 2002. "Modeling the Public Health Response to Bioterrorism: Using Discrete Event Simulation to Design Antibiotic Distribution Centers," Medical Decision Making, , vol. 22(1_suppl), pages 17-25, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    2. Damon J A Toth & Adi V Gundlapalli & Wiley A Schell & Kenneth Bulmahn & Thomas E Walton & Christopher W Woods & Catherine Coghill & Frank Gallegos & Matthew H Samore & Frederick R Adler, 2013. "Quantitative Models of the Dose-Response and Time Course of Inhalational Anthrax in Humans," PLOS Pathogens, Public Library of Science, vol. 9(8), pages 1-18, August.
    3. Özge Karanfil & Yaman Barlas, 2008. "A Dynamic Simulator for the Management of Disorders of the Body Water Homeostasis," Operations Research, INFORMS, vol. 56(6), pages 1474-1492, December.
    4. Lindelauf, R. & Borm, P.E.M. & Hamers, H.J.M., 2010. "One-Mode Projection Analysis and Design of Covert Affiliation Networks," Discussion Paper 2010-53, Tilburg University, Center for Economic Research.
    5. Margaret L. Brandeau, 2019. "OR Forum—Public Health Preparedness: Answering (Largely Unanswerable) Questions with Operations Research—The 2016–2017 Philip McCord Morse Lecture," Operations Research, INFORMS, vol. 67(3), pages 700-710, May.
    6. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.
    7. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    8. Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
    9. Michael A. Hamilton & Tao Hong & Elizabeth Casman & Patrick L. Gurian, 2015. "Risk‐Based Decision Making for Reoccupation of Contaminated Areas Following a Wide‐Area Anthrax Release," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1348-1363, July.
    10. Ubaid Illahi & Mohammad Shafi Mir, 2021. "Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: learning from the past experiences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11157-11178, August.
    11. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    12. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    13. S. S. Isukapalli & P. J. Lioy & P. G. Georgopoulos, 2008. "Mechanistic Modeling of Emergency Events: Assessing the Impact of Hypothetical Releases of Anthrax," Risk Analysis, John Wiley & Sons, vol. 28(3), pages 723-740, June.
    14. Pan, Yuqing & Cheng, T.C.E. & He, Yuxuan & Ng, Chi To & Sethi, Suresh P., 2022. "Foresighted medical resources allocation during an epidemic outbreak," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    15. Büyüktahtakın, İ. Esra & des-Bordes, Emmanuel & Kıbış, Eyyüb Y., 2018. "A new epidemics–logistics model: Insights into controlling the Ebola virus disease in West Africa," European Journal of Operational Research, Elsevier, vol. 265(3), pages 1046-1063.
    16. Hanane Allioui & Azzeddine Allioui & Youssef Mourdi, 2024. "Maintaining effective logistics management during and after COVID‑19 pandemic: survey on the importance of artificial intelligence to enhance recovery strategies," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 918-962, June.
    17. Gary E. Bolton & Elena Katok, 2018. "Cry Wolf or Equivocate? Credible Forecast Guidance in a Cost-Loss Game," Management Science, INFORMS, vol. 64(3), pages 1440-1457, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali Asgary & Svetozar Zarko Valtchev & Michael Chen & Mahdi M. Najafabadi & Jianhong Wu, 2020. "Artificial Intelligence Model of Drive-Through Vaccination Simulation," IJERPH, MDPI, vol. 18(1), pages 1-10, December.
    2. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    3. Eva K. Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Large-Scale Dispensing for Emergency Response to Bioterrorism and Infectious-Disease Outbreak," Interfaces, INFORMS, vol. 36(6), pages 591-607, December.
    4. Ubaid Illahi & Mohammad Shafi Mir, 2021. "Maintaining efficient logistics and supply chain management operations during and after coronavirus (COVID-19) pandemic: learning from the past experiences," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 11157-11178, August.
    5. Joseph R. Egan & Richard Amlôt, 2012. "Modelling Mass Casualty Decontamination Systems Informed by Field Exercise Data," IJERPH, MDPI, vol. 9(10), pages 1-26, October.
    6. Feng, Keli & Bizimana, Emmanuel & Agu, Deedee D. & Issac, Tana T., 2012. "Optimization and Simulation Modeling of Disaster Relief Supply Chain: A Literature Review," MPRA Paper 58204, University Library of Munich, Germany.
    7. Douglas K. Owens, 2002. "Analytic Tools for Public Health Decision Making," Medical Decision Making, , vol. 22(1_suppl), pages 3-10, September.
    8. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    9. Francesco Pilati & Riccardo Tronconi & Giandomenico Nollo & Sunderesh S. Heragu & Florian Zerzer, 2021. "Digital Twin of COVID-19 Mass Vaccination Centers," Sustainability, MDPI, vol. 13(13), pages 1-26, July.
    10. Peter Williams & Guangfu Tai & Yiming Lei, 2010. "Simulation based analysis of patient arrival to health care systems and evaluation of an operations improvement scheme," Annals of Operations Research, Springer, vol. 178(1), pages 263-279, July.
    11. Hanane Allioui & Azzeddine Allioui & Youssef Mourdi, 2024. "Maintaining effective logistics management during and after COVID‑19 pandemic: survey on the importance of artificial intelligence to enhance recovery strategies," OPSEARCH, Springer;Operational Research Society of India, vol. 61(2), pages 918-962, June.
    12. Gregory S. Zaric & Dena M. Bravata & Jon-Erik Cleophas Holty & Kathryn M. McDonald & Douglas K. Owens & Margaret L. Brandeau, 2008. "Modeling the Logistics of Response to Anthrax Bioterrorism," Medical Decision Making, , vol. 28(3), pages 332-350, May.
    13. Eva Lee & Siddhartha Maheshwary & Jacquelyn Mason & William Glisson, 2006. "Decision support system for mass dispensing of medications for infectious disease outbreaks and bioterrorist attacks," Annals of Operations Research, Springer, vol. 148(1), pages 25-53, November.
    14. Ramwadhdoebe, Sabrina & Buskens, Erik & Sakkers, Ralph J.B. & Stahl, James E., 2009. "A tutorial on discrete-event simulation for health policy design and decision making: Optimizing pediatric ultrasound screening for hip dysplasia as an illustration," Health Policy, Elsevier, vol. 93(2-3), pages 143-150, December.

    More about this item

    Keywords

    bioterrorism; queueing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:51:y:2005:i:5:p:679-694. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.