IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v32y1986i7p878-889.html
   My bibliography  Save this article

An Adaptive Filter for Estimating Spatially-Varying Parameters: Application to Modeling Police Hours Spent in Response to Calls for Service

Author

Listed:
  • Stuart A. Foster

    (Department of Geography, The Ohio State University, Columbus, Ohio 43210)

  • Wilpen L. Gorr

    (School of Urban and Public Affairs, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213)

Abstract

The Spatial Adaptive Filter (SAF), introduced in this paper, uses generalized damped negative feedback to estimate spatially-varying parameters for multivariate models. Previous adaptive filters have been designed to estimate time-varying parameters and process data recursively in time sequence. SAF processes all data simultaneously in an iterative algorithm. Monte Carlo studies show that SAF is successful in automatically identifying and estimating step-jump and continuous spatial variation in the parameters of causal variables. A case study on census-tract data from Columbus, Ohio, relating police-vehicle hours spent in responding to calls to socio-economic indicators, has systematic spatial variation in estimated parameters. Independent variables that are significant in inner-city areas of Columbus become progressively less significant in moving to outlying areas.

Suggested Citation

  • Stuart A. Foster & Wilpen L. Gorr, 1986. "An Adaptive Filter for Estimating Spatially-Varying Parameters: Application to Modeling Police Hours Spent in Response to Calls for Service," Management Science, INFORMS, vol. 32(7), pages 878-889, July.
  • Handle: RePEc:inm:ormnsc:v:32:y:1986:i:7:p:878-889
    DOI: 10.1287/mnsc.32.7.878
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.32.7.878
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.32.7.878?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sven Müller, 2012. "Identifying spatial nonstationarity in German regional firm start-up data," Review of Regional Research: Jahrbuch für Regionalwissenschaft, Springer;Gesellschaft für Regionalforschung (GfR), vol. 32(2), pages 113-132, September.
    2. Wei, Chuan-Hua & Qi, Fei, 2012. "On the estimation and testing of mixed geographically weighted regression models," Economic Modelling, Elsevier, vol. 29(6), pages 2615-2620.
    3. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Testing for Spatial Autocorrelation among the Residuals of the Geographically Weighted Regression," Environment and Planning A, , vol. 32(5), pages 871-890, May.
    4. Luc Anselin, 2010. "Thirty years of spatial econometrics," Papers in Regional Science, Wiley Blackwell, vol. 89(1), pages 3-25, March.
    5. Xu, Wan & Lambert, Dayton M., 2011. "Business Establishment Growth in the Appalachian Region, 2000-2007: An Application of Smooth Transition Spatial Process Models," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 43(3), pages 1-16, August.
    6. Yonghua Zou, 2015. "Re-examining the Neighborhood Distribution of Higher Priced Mortgage Lending: Global versus Local Methods," Growth and Change, Wiley Blackwell, vol. 46(4), pages 654-674, December.
    7. Yee Leung & Chang-Lin Mei & Wen-Xiu Zhang, 2000. "Statistical Tests for Spatial Nonstationarity Based on the Geographically Weighted Regression Model," Environment and Planning A, , vol. 32(1), pages 9-32, January.
    8. Dayton M. Lambert & Wan Xu & Raymond J. G. M. Florax, 2014. "Partial Adjustment Analysis of Income and Jobs, and Growth Regimes in the Appalachian Region with Smooth Transition Spatial Process Models," International Regional Science Review, , vol. 37(3), pages 328-364, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:32:y:1986:i:7:p:878-889. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.