IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v24y1977i3p345-357.html
   My bibliography  Save this article

Modeling Facility Location Problems as Generalized Assignment Problems

Author

Listed:
  • G. Terry Ross

    (The University of Georgia)

  • Richard M. Soland

    (Ecole Polytechnique de Montreal, Canada)

Abstract

A variety of well-known facility location and location-allocation models are shown to be equivalent to, and therefore solvable as, generalized assignment problems (GAP's). (The GAP is a 0-1 programming model in which it is desired to minimize the cost of assigning n tasks to a subset of m agents. Each task must be assigned to one agent, but each agent is limited only by the amount of a resource, e.g., time, available to him and the fact that the amount of resource required by a task depends on both the task and the agent performing it.) The facility location models considered are divided into public and private sector models. In the public sector, both p-median and capacity constrained p-median problems are treated (In the p-median problem exactly p of n sites must be selected to provide service to all n. Each site has an associated weight, e.g., its population, and it is desired to minimize the weighted average distance between the n sites and their respective service sites. The capacity constrained p-median problem differs only in that there is an upper limit on the sum of the weights of the sites served by each service site.) In the private sector we consider both capacitated and uncapacitated warehouse location problems in which each customer's demands must be satisfied by a single warehouse. In addition, we show how certain types of constraints limiting the site and capacity combinations allowed can be incorporated into these models through their treatment as GAP's. An existing algorithm for the GAP is modified to take advantage of the special structure of these facility location problems, and computational results are reported.

Suggested Citation

  • G. Terry Ross & Richard M. Soland, 1977. "Modeling Facility Location Problems as Generalized Assignment Problems," Management Science, INFORMS, vol. 24(3), pages 345-357, November.
  • Handle: RePEc:inm:ormnsc:v:24:y:1977:i:3:p:345-357
    DOI: 10.1287/mnsc.24.3.345
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.24.3.345
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.24.3.345?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cattrysse, D. G. & van Wassenhove, L. N., 1990. "A Survey Of Algorithms For The Generalized Assignment Problem," Econometric Institute Archives 272389, Erasmus University Rotterdam.
    2. E L Hillsman, 1984. "The p-Median Structure as a Unified Linear Model for Location—Allocation Analysis," Environment and Planning A, , vol. 16(3), pages 305-318, March.
    3. J R Current & J E Storbeck, 1988. "Capacitated Covering Models," Environment and Planning B, , vol. 15(2), pages 153-163, June.
    4. Albareda-Sambola, Maria & Vlerk, Maarten H. van der & Fernandez, Elena, 2002. "Exact solutions to a class of stochastic generalized assignment problems," Research Report 02A11, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    5. Martello, Silvano & Toth, Paolo, 1995. "The bottleneck generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 83(3), pages 621-638, June.
    6. repec:dgr:rugsom:02a11 is not listed on IDEAS
    7. Shtub, Avraham & Kogan, Konstantin, 1998. "Capacity planning by the dynamic multi-resource generalized assignment problem (DMRGAP)," European Journal of Operational Research, Elsevier, vol. 105(1), pages 91-99, February.
    8. Michael A. Trick, 1992. "A linear relaxation heuristic for the generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 39(2), pages 137-151, March.
    9. Joseph B. Mazzola & Alan W. Neebe, 2012. "A generalized assignment model for dynamic supply chain capacity planning," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 470-485, September.
    10. Jeet, V. & Kutanoglu, E., 2007. "Lagrangian relaxation guided problem space search heuristics for generalized assignment problems," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1039-1056, November.
    11. Robert M. Nauss, 2003. "Solving the Generalized Assignment Problem: An Optimizing and Heuristic Approach," INFORMS Journal on Computing, INFORMS, vol. 15(3), pages 249-266, August.
    12. J Malczewski & W Ogryczak, 1995. "The Multiple Criteria Location Problem: 1. A Generalized Network Model and the Set of Efficient Solutions," Environment and Planning A, , vol. 27(12), pages 1931-1960, December.
    13. Haddadi, Salim & Ouzia, Hacene, 2004. "Effective algorithm and heuristic for the generalized assignment problem," European Journal of Operational Research, Elsevier, vol. 153(1), pages 184-190, February.
    14. Amini, Mohammad M. & Racer, Michael & Ghandforoush, Parviz, 1998. "Heuristic sensitivity analysis in a combinatoric environment: An exposition and case study," European Journal of Operational Research, Elsevier, vol. 108(3), pages 604-617, August.
    15. Zheng, Feifeng & Cheng, Yongxi & Xu, Yinfeng & Liu, Ming, 2013. "Competitive strategies for an online generalized assignment problem with a service consecution constraint," European Journal of Operational Research, Elsevier, vol. 229(1), pages 59-66.
    16. Christian Haket & Bo van der Rhee & Jacques de Swart, 2020. "Saving Time and Money and Reducing Carbon Dioxide Emissions by Efficiently Allocating Customers," Interfaces, INFORMS, vol. 50(3), pages 153-165, May.
    17. Lin, Edward Y. H. & Bricker, Dennis L., 1996. "Computational comparison on the partitioning strategies in multiple choice integer programming," European Journal of Operational Research, Elsevier, vol. 88(1), pages 182-202, January.
    18. H. Edwin Romeijn & Dolores Romero Morales, 2001. "Generating Experimental Data for the Generalized Assignment Problem," Operations Research, INFORMS, vol. 49(6), pages 866-878, December.
    19. Joseph B. Mazzola & Steven P. Wilcox, 2001. "Heuristics for the multi‐resource generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(6), pages 468-483, September.
    20. Özlem Karsu & Meral Azizoğlu, 2014. "Bicriteria multiresource generalized assignment problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 61(8), pages 621-636, December.
    21. Drexl, Andreas & Jørnsten, Kurt, 2007. "Pricing the generalized assignment problem," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 627, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:24:y:1977:i:3:p:345-357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.