IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v23y1977i5p490-498.html
   My bibliography  Save this article

Further Results on Planning Horizons in the Production Smoothing Problem

Author

Listed:
  • Dwight R. Lee

    (University of Colorado, Boulder)

  • Daniel Orr

    (University of California, San Diego)

Abstract

A generalized version of the Modigliani-Hohn production smoothing model is analyzed, and two types or classes of theorem are proved. (Theorems 1 and 2): The planning horizon (defined as a minimal interval of sufficient length to yield optimal current decisions) depends critically on the existence of "bottleneck" conditions; in the case of the original M-H model, a bottleneck arises out of the inventory nonnegativity constraint, and it is here shown that an additional interesting bottleneck condition arises out of an inventory storage capacity constraint. Whether a particular type of bottleneck defines a horizon will depend, interestingly, on the terminal inventory condition that is imposed for the original optimization process. (Theorems 3 and 4): The sensitivity of horizon length to two economic parameters, the discount factor and the marginal storage cost, will depend on whether the horizon-determining bottleneck is due to a binding inventory capacity constraint, or a binding nonnegativity constraint. The capacity constraint will yield "perverse" horizon sensitivities first noted by Charnes, Dreze and Miller [Charnes, Abraham, Drèze, Jaques, Miller, Merton. 1966. Decision and horizon rules for stochastic planning problems: a linear example. Econometrica 34 307-330.] in their work on the warehousing problem. In light of these results, the importance of horizons as a programming concept can be questioned.

Suggested Citation

  • Dwight R. Lee & Daniel Orr, 1977. "Further Results on Planning Horizons in the Production Smoothing Problem," Management Science, INFORMS, vol. 23(5), pages 490-498, January.
  • Handle: RePEc:inm:ormnsc:v:23:y:1977:i:5:p:490-498
    DOI: 10.1287/mnsc.23.5.490
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.23.5.490
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.23.5.490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Archis Ghate & Robert L. Smith, 2009. "Optimal Backlogging Over an Infinite Horizon Under Time-Varying Convex Production and Inventory Costs," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 362-368, June.
    2. Robert L. Smith & Rachel Q. Zhang, 1998. "Infinite Horizon Production Planning in Time-Varying Systems with Convex Production and Inventory Costs," Management Science, INFORMS, vol. 44(9), pages 1313-1320, September.
    3. Suresh Chand & Vernon Ning Hsu & Suresh Sethi, 2002. "Forecast, Solution, and Rolling Horizons in Operations Management Problems: A Classified Bibliography," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 25-43, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:23:y:1977:i:5:p:490-498. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.