IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v22y1976i10p1147-1158.html
   My bibliography  Save this article

An Algorithm for Nonlinear Knapsack Problems

Author

Listed:
  • Thomas L. Morin

    (The Technological Institute, Northwestern University)

  • Roy E. Marsten

    (Sloan School of Management, Massachusetts Institute of Technology)

Abstract

An algorithm which recursively generates the complete family of undominated feasible solutions to separable nonlinear multidimensional knapsack problems is developed by exploiting discontinuity preserving properties of the maximal convolution. The "curse of dimensionality," which is usually associated with dynamic programming algorithms, is successfully mitigated by reducing an M-dimensional dynamic program to a 1-dimensional dynamic program through the use of the imbedded state space approach. Computational experience with the algorithm on problems with as many as 10 state variables is also reported and several interesting extensions are discussed.

Suggested Citation

  • Thomas L. Morin & Roy E. Marsten, 1976. "An Algorithm for Nonlinear Knapsack Problems," Management Science, INFORMS, vol. 22(10), pages 1147-1158, June.
  • Handle: RePEc:inm:ormnsc:v:22:y:1976:i:10:p:1147-1158
    DOI: 10.1287/mnsc.22.10.1147
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.22.10.1147
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.22.10.1147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kurt M. Bretthauer & Bala Shetty & Siddhartha Syam, 2003. "A specially structured nonlinear integer resource allocation problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 50(7), pages 770-792, October.
    2. SYAFITRI, Utami & SARTONO, Bagus & GOOS, Peter, 2015. "D- and I-optimal design of mixture experiments in the presence of ingredient availability constraints," Working Papers 2015003, University of Antwerp, Faculty of Business and Economics.
    3. AgralI, Semra & Geunes, Joseph, 2009. "Solving knapsack problems with S-curve return functions," European Journal of Operational Research, Elsevier, vol. 193(2), pages 605-615, March.
    4. Safer, Hershel M. & Orlin, James B., 1953-, 1995. "Fast approximation schemes for multi-criteria combinatorial optimization," Working papers 3756-95., Massachusetts Institute of Technology (MIT), Sloan School of Management.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:22:y:1976:i:10:p:1147-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.