IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v20y1973i3p282-292.html
   My bibliography  Save this article

Nested Decomposition and Multi-Stage Linear Programs

Author

Listed:
  • C. Roger Glassey

    (University of California, Berkeley)

Abstract

A multi-stage linear program is defined with linking variables that connect consecutive stages. Optimality conditions for the composite problem are partitioned into local and linking conditions. When the Dantzig-Wolfe decomposition scheme is applied with the first stage as the master, the subproblem is also a MLP with one' less stage. The same decomposition is then applied to the subproblem, giving rise to a nested decomposition scheme, in which each stage acts as a master for the following stage and a subproblem for the preceding. Optimizing a single stage problem results in satisfying the "local" optimality conditions. A very general rule is given for selecting the next subproblem to optimize, and finite convergence to a solution satisfying all linking conditions is demonstrated. Procedures for extracting the optimal primal solution at the end of the main algorithm and for initialization are given. Particular rules for selecting the next subproblem and for generating additional proposal vectors are discussed. Finally, it is shown how a variety of problems may be restructured as multi-stage linear programs to which this algorithm may be applied, and some computational experience is reported.

Suggested Citation

  • C. Roger Glassey, 1973. "Nested Decomposition and Multi-Stage Linear Programs," Management Science, INFORMS, vol. 20(3), pages 282-292, November.
  • Handle: RePEc:inm:ormnsc:v:20:y:1973:i:3:p:282-292
    DOI: 10.1287/mnsc.20.3.282
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.20.3.282
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.20.3.282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. N. Edirisinghe & E. Patterson, 2007. "Multi-period stochastic portfolio optimization: Block-separable decomposition," Annals of Operations Research, Springer, vol. 152(1), pages 367-394, July.
    2. Thomas W. M. Vossen & R. Kevin Wood & Alexandra M. Newman, 2016. "Hierarchical Benders Decomposition for Open-Pit Mine Block Sequencing," Operations Research, INFORMS, vol. 64(4), pages 771-793, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:20:y:1973:i:3:p:282-292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.