IDEAS home Printed from https://ideas.repec.org/a/inm/orisre/v31y2020i3p731-752.html
   My bibliography  Save this article

Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis

Author

Listed:
  • Xiaomo Liu

    (S&P Global Ratings, New York, New York 10041)

  • G. Alan Wang

    (Department of Business Information Technology, Pamplin College of Business, Virginia Tech, Blacksburg, Virginia 24061)

  • Weiguo Fan

    (Department of Business Analytics, Tippie College of Business, University of Iowa, Iowa City, Iowa 52242)

  • Zhongju Zhang

    (W. P. Carey School of Business, Arizona State University, Tempe, Arizona 85287)

Abstract

Online communities and social collaborative platforms have become an increasingly popular avenue for knowledge sharing and exchange. In these communities, users often engage in informal conversations responding to questions and answers, and over time, they produce a huge amount of highly unstructured and implicit knowledge. How to effectively manage the knowledge repository and identify useful solutions thus becomes a major challenge. In this study, we propose a novel text analytic framework to extract important features from online forums and apply them to classify the usefulness of a solution. Guided by the design science research paradigm, we utilize a kernel theory of the knowledge adoption model, which captures a rich set of argument quality and source credibility features as the predictors of information usefulness. We test our framework on two large-scale knowledge communities: the Apple Support Community and Oracle Community. Our extensive analysis and performance evaluation illustrate that the proposed framework is both effective and efficient in predicting the usefulness of solutions embedded in the knowledge repository. We highlight the theoretical implications of the study as well as the practical applications of the framework to other domains.

Suggested Citation

  • Xiaomo Liu & G. Alan Wang & Weiguo Fan & Zhongju Zhang, 2020. "Finding Useful Solutions in Online Knowledge Communities: A Theory-Driven Design and Multilevel Analysis," Information Systems Research, INFORMS, vol. 31(3), pages 731-752, September.
  • Handle: RePEc:inm:orisre:v:31:y:2020:i:3:p:731-752
    DOI: 10.1287/isre.2019.0911
    as

    Download full text from publisher

    File URL: https://doi.org/10.1287/isre.2019.0911
    Download Restriction: no

    File URL: https://libkey.io/10.1287/isre.2019.0911?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter B. Seddon, 1997. "A Respecification and Extension of the DeLone and McLean Model of IS Success," Information Systems Research, INFORMS, vol. 8(3), pages 240-253, September.
    2. James E. Bailey & Sammy W. Pearson, 1983. "Development of a Tool for Measuring and Analyzing Computer User Satisfaction," Management Science, INFORMS, vol. 29(5), pages 530-545, May.
    3. Christy M.K. Cheung & Matthew K.O. Lee & Zach W.Y. Lee, 2013. "Understanding the continuance intention of knowledge sharing in online communities of practice through the post‐knowledge‐sharing evaluation processes," Journal of the American Society for Information Science and Technology, Association for Information Science & Technology, vol. 64(7), pages 1357-1374, July.
    4. Stephanie Watts Sussman & Wendy Schneier Siegal, 2003. "Informational Influence in Organizations: An Integrated Approach to Knowledge Adoption," Information Systems Research, INFORMS, vol. 14(1), pages 47-65, March.
    5. Liu, Zhiwei & Park, Sangwon, 2015. "What makes a useful online review? Implication for travel product websites," Tourism Management, Elsevier, vol. 47(C), pages 140-151.
    6. David Constant & Lee Sproull & Sara Kiesler, 1996. "The Kindness of Strangers: The Usefulness of Electronic Weak Ties for Technical Advice," Organization Science, INFORMS, vol. 7(2), pages 119-135, April.
    7. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    8. José Osvaldo De Sordi & Manuel Meireles & Osvaldo Luiz Oliveira, 2016. "The Text Matrix as a tool to increase the cohesion of extensive texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 67(4), pages 900-914, April.
    9. Joseph G. Walls & George R. Widmeyer & Omar A. El Sawy, 1992. "Building an Information System Design Theory for Vigilant EIS," Information Systems Research, INFORMS, vol. 3(1), pages 36-59, March.
    10. Alton Y.K. Chua & Snehasish Banerjee, 2015. "Understanding review helpfulness as a function of reviewer reputation, review rating, and review depth," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 66(2), pages 354-362, February.
    11. Pan, Yue & Zhang, Jason Q., 2011. "Born Unequal: A Study of the Helpfulness of User-Generated Product Reviews," Journal of Retailing, Elsevier, vol. 87(4), pages 598-612.
    12. Pradeep K. Chintagunta & Shyam Gopinath & Sriram Venkataraman, 2010. "The Effects of Online User Reviews on Movie Box Office Performance: Accounting for Sequential Rollout and Aggregation Across Local Markets," Marketing Science, INFORMS, vol. 29(5), pages 944-957, 09-10.
    13. Xinxin Li & Lorin M. Hitt, 2008. "Self-Selection and Information Role of Online Product Reviews," Information Systems Research, INFORMS, vol. 19(4), pages 456-474, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gen-Yih Liao & Tzu-Ling Huang & Alan R. Dennis & Ching-I Teng, 2024. "The Influence of Media Capabilities on Knowledge Contribution in Online Communities," Information Systems Research, INFORMS, vol. 35(1), pages 165-183, March.
    2. Xiaohui Zhang & Qianzhou Du & Zhongju Zhang, 2022. "A theory‐driven machine learning system for financial disinformation detection," Production and Operations Management, Production and Operations Management Society, vol. 31(8), pages 3160-3179, August.
    3. Gang Chen & Lihua Huang & Shuaiyong Xiao & Chenghong Zhang & Huimin Zhao, 2024. "Attending to Customer Attention: A Novel Deep Learning Method for Leveraging Multimodal Online Reviews to Enhance Sales Prediction," Information Systems Research, INFORMS, vol. 35(2), pages 829-849, June.
    4. Yi Yang & Kunpeng Zhang & Yangyang Fan, 2023. "sDTM: A Supervised Bayesian Deep Topic Model for Text Analytics," Information Systems Research, INFORMS, vol. 34(1), pages 137-156, March.
    5. Yu Jeffrey Hu & Jeroen Rombouts & Ines Wilms, 2023. "Fast Forecasting of Unstable Data Streams for On-Demand Service Platforms," Papers 2303.01887, arXiv.org, revised May 2024.
    6. Haochuan Cui & Tiewei Li & Cheng-Jun Wang, 2023. "Climbing up the ladder of abstraction: how to span the boundaries of knowledge space in the online knowledge market?," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-12, December.
    7. Qingfeng Zeng & Wei Zhuang & Qian Guo & Weiguo Fan, 2022. "What factors influence grassroots knowledge supplier performance in online knowledge platforms? Evidence from a paid Q&A service," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2507-2523, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lifang Peng & Qinyu Liao & Xiaorong Wang & Xuanfang He, 2016. "Factors affecting female user information adoption: an empirical investigation on fashion shopping guide websites," Electronic Commerce Research, Springer, vol. 16(2), pages 145-169, June.
    2. Srivastava, Vartika & Kalro, Arti D., 2019. "Enhancing the Helpfulness of Online Consumer Reviews: The Role of Latent (Content) Factors," Journal of Interactive Marketing, Elsevier, vol. 48(C), pages 33-50.
    3. Zheng, Lili, 2021. "The classification of online consumer reviews: A systematic literature review and integrative framework," Journal of Business Research, Elsevier, vol. 135(C), pages 226-251.
    4. Guo, Yue & Barnes, Stuart J. & Jia, Qiong, 2017. "Mining meaning from online ratings and reviews: Tourist satisfaction analysis using latent dirichlet allocation," Tourism Management, Elsevier, vol. 59(C), pages 467-483.
    5. Yani Wang & Jun Wang & Tang Yao, 2019. "What makes a helpful online review? A meta-analysis of review characteristics," Electronic Commerce Research, Springer, vol. 19(2), pages 257-284, June.
    6. Yi Feng & Yunqiang Yin & Dujuan Wang & Lalitha Dhamotharan & Joshua Ignatius & Ajay Kumar, 2023. "Diabetic patient review helpfulness: unpacking online drug treatment reviews by text analytics and design science approach," Annals of Operations Research, Springer, vol. 328(1), pages 387-418, September.
    7. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    8. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    9. S. Cicognani & P. Figini & M. Magnani, 2016. "Social Influence Bias in Online Ratings: A Field Experiment," Working Papers wp1060, Dipartimento Scienze Economiche, Universita' di Bologna.
    10. King, Robert Allen & Racherla, Pradeep & Bush, Victoria D., 2014. "What We Know and Don't Know About Online Word-of-Mouth: A Review and Synthesis of the Literature," Journal of Interactive Marketing, Elsevier, vol. 28(3), pages 167-183.
    11. Akbari, Morteza & Foroudi, Pantea & Zaman Fashami, Rahime & Mahavarpour, Nasrin & Khodayari, Maryam, 2022. "Let us talk about something: The evolution of e-WOM from the past to the future," Journal of Business Research, Elsevier, vol. 149(C), pages 663-689.
    12. Li, Yiming & Li, Gang & Tayi, Giri Kumar & Cheng, T.C.E., 2019. "Omni-channel retailing: Do offline retailers benefit from online reviews?," International Journal of Production Economics, Elsevier, vol. 218(C), pages 43-61.
    13. Srikanth Parameswaran & Pubali Mukherjee & Rohit Valecha, 2023. "I Like My Anonymity: An Empirical Investigation of the Effect of Multidimensional Review Text and Role Anonymity on Helpfulness of Employer Reviews," Information Systems Frontiers, Springer, vol. 25(2), pages 853-870, April.
    14. Li Jie & Xue Wenyi & Yang Fang & Li Yakun, 2017. "An Integrated Research Framework for Effect of EWOM," Journal of Systems Science and Information, De Gruyter, vol. 5(4), pages 343-355, August.
    15. Xiang, Zheng & Du, Qianzhou & Ma, Yufeng & Fan, Weiguo, 2017. "A comparative analysis of major online review platforms: Implications for social media analytics in hospitality and tourism," Tourism Management, Elsevier, vol. 58(C), pages 51-65.
    16. Baidyanath Biswas & Pooja Sengupta & Boudhayan Ganguly, 2022. "Your reviews or mine? Exploring the determinants of “perceived helpfulness” of online reviews: a cross-cultural study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(3), pages 1083-1102, September.
    17. Kaushik, Kapil & Mishra, Rajhans & Rana, Nripendra P. & Dwivedi, Yogesh K., 2018. "Exploring reviews and review sequences on e-commerce platform: A study of helpful reviews on Amazon.in," Journal of Retailing and Consumer Services, Elsevier, vol. 45(C), pages 21-32.
    18. Un-Kon Lee, 2017. "International Tourism Advertisements on Social Media: Impact of Argument Quality and Source," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    19. Sungsik Park & Woochoel Shin & Jinhong Xie, 2021. "The Fateful First Consumer Review," Marketing Science, INFORMS, vol. 40(3), pages 481-507, May.
    20. Moradi, Masoud & Dass, Mayukh & Kumar, Piyush, 2023. "Differential effects of analytical versus emotional rhetorical style on review helpfulness," Journal of Business Research, Elsevier, vol. 154(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orisre:v:31:y:2020:i:3:p:731-752. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.