IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i4p747-763.html
   My bibliography  Save this article

An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems

Author

Listed:
  • Hongke Zhao

    (College of Management and Economics, Tianjin University, Tianjin 300000, China; Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University, Tianjin 300000, China)

  • Chuang Zhao

    (College of Management and Economics, Tianjin University, Tianjin 300000, China; Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University, Tianjin 300000, China)

  • Xi Zhang

    (College of Management and Economics, Tianjin University, Tianjin 300000, China; Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University, Tianjin 300000, China; School of Management and Economics, Beijing Institute of Technology, Beijing 10081, People’s Republic of China)

  • Nanlin Liu

    (College of Management and Economics, Tianjin University, Tianjin 300000, China; Laboratory of Computation and Analytics of Complex Management Systems (CACMS), Tianjin University, Tianjin 300000, China)

  • Hengshu Zhu

    (Career Science Laboratory, BOSS Zhipin, Beijing 100000, China)

  • Qi Liu

    (Anhui Province Key Laboratory of Big Data Analysis and Application, University of Science and Technology of China, Hefei, Anhui Province 230000, China)

  • Hui Xiong

    (Hong Kong University of Science and Technology (GuangZhou), Guangzhou, Guangdong Province 510000, China)

Abstract

Imbalanced classification is widely referred in many real-world applications and has been extensively studied. Most existing algorithms consider alleviating the imbalance by sampling or guiding ensemble learners with punishments. The combination of ensemble learning and sampling strategy at class level has achieved great progress. Actually, specific hard examples have little benefit for model learning and even degrade the performance. From the view of identifying classification difficulty of samples, one important motivation is to design algorithms to finely equip different samples with progressive learning. Unfortunately, how to perfectly configure the sampling and learning strategies under ensemble principles at the sample level remains a research gap. In this paper, we propose a new view from the sample level rather than class level in existing studies. We design an ensemble approach in pipe with sample-level gradient resampling, that is, balanced cascade with filters (BCWF) . Before that, as a preliminary exploration, we first design a hard examples mining algorithm to explore the gradient distribution of classification difficulty of samples and identify the hard examples. Specifically, BCWF uses an under-sampling strategy and a boosting manner to train T predictive classifiers and reidentify hard examples. In BCWF, moreover, we design two types of filters: the first is assembled with a hard filter (BCWF_h), whereas the second is assembled with a soft filter (BCWF_s). In each round of boosting, BCWF_h strictly removes a gradient/set of the hardest examples from both classes, whereas BCWF_s removes a larger number of harder and easy examples simultaneously for final balanced-class retention. Consequently, the well-trained T predictive classifiers can be used with two ensemble voting strategies: average probability and majority vote . To evaluate the proposed approach, we conduct intensive experiments on 10 benchmark data sets and apply our algorithms to perform default user detection on a real-world peer to peer lending data set. The experimental results fully demonstrate the effectiveness and the managerial implications of our approach when compared with 11 competitive algorithms.

Suggested Citation

  • Hongke Zhao & Chuang Zhao & Xi Zhang & Nanlin Liu & Hengshu Zhu & Qi Liu & Hui Xiong, 2023. "An Ensemble Learning Approach with Gradient Resampling for Class-Imbalance Problems," INFORMS Journal on Computing, INFORMS, vol. 35(4), pages 747-763, July.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:4:p:747-763
    DOI: 10.1287/ijoc.2023.1274
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2023.1274
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2023.1274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jussupow, Ekaterina & Spohrer, Kai & Heinzl, Armin & Gawlitza, Joshua, 2021. "Augmenting Medical Diagnosis Decisions? An Investigation into Physicians’ Decision-Making Process with Artificial Intelligence," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 137446, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    2. Asim Roy & Shiban Qureshi & Kartikeya Pande & Divitha Nair & Kartik Gairola & Pooja Jain & Suraj Singh & Kirti Sharma & Akshay Jagadale & Yi-Yang Lin & Shashank Sharma & Ramya Gotety & Yuexin Zhang & , 2019. "Performance Comparison of Machine Learning Platforms," INFORMS Journal on Computing, INFORMS, vol. 31(2), pages 207-225, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tinglong Dai & Sridhar Tayur, 2022. "Designing AI‐augmented healthcare delivery systems for physician buy‐in and patient acceptance," Production and Operations Management, Production and Operations Management Society, vol. 31(12), pages 4443-4451, December.
    2. Christoph Riedl & Eric Bogert, 2024. "Effects of AI Feedback on Learning, the Skill Gap, and Intellectual Diversity," Papers 2409.18660, arXiv.org.
    3. Martin Johnsen & Oliver Brandt & Sergio Garrido & Francisco C. Pereira, 2020. "Population synthesis for urban resident modeling using deep generative models," Papers 2011.06851, arXiv.org.
    4. Kevin Bauer & Andrej Gill, 2024. "Mirror, Mirror on the Wall: Algorithmic Assessments, Transparency, and Self-Fulfilling Prophecies," Information Systems Research, INFORMS, vol. 35(1), pages 226-248, March.
    5. Mi, Yunlong & Wang, Zongrun & Quan, Pei & Shi, Yong, 2024. "A semi-supervised concept-cognitive computing system for dynamic classification decision making with limited feedback information," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1123-1138.
    6. Bauer, Kevin & von Zahn, Moritz & Hinz, Oliver, 2023. "Please take over: XAI, delegation of authority, and domain knowledge," SAFE Working Paper Series 394, Leibniz Institute for Financial Research SAFE.
    7. Erdem Dogukan Yilmaz & Christian Peukert, 2024. "Who Benefits from AI? Project-Level Evidence on Labor Demand, Operations and Profitability," CESifo Working Paper Series 11321, CESifo.
    8. Pascal Hamm & Michael Klesel & Patricia Coberger & H. Felix Wittmann, 2023. "Explanation matters: An experimental study on explainable AI," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-21, December.
    9. John Patrick Lalor & Pedro Rodriguez, 2023. "py-irt : A Scalable Item Response Theory Library for Python," INFORMS Journal on Computing, INFORMS, vol. 35(1), pages 5-13, January.
    10. Kevin Bauer & Moritz von Zahn & Oliver Hinz, 2023. "Expl(AI)ned: The Impact of Explainable Artificial Intelligence on Users’ Information Processing," Information Systems Research, INFORMS, vol. 34(4), pages 1582-1602, December.
    11. Fink, Alexander A. & Klöckner, Maximilian & Räder, Tobias & Wagner, Stephan M., 2022. "Supply chain management accelerators: Types, objectives, and key design features," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    12. Ekaterina Jussupow & Kai Spohrer & Armin Heinzl, 2022. "Radiologists’ Usage of Diagnostic AI Systems," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(3), pages 293-309, June.
    13. Sullivan, Yulia & Fosso Wamba, Samuel, 2024. "Artificial intelligence and adaptive response to market changes: A strategy to enhance firm performance and innovation," Journal of Business Research, Elsevier, vol. 174(C).
    14. Andreas Fügener & Jörn Grahl & Alok Gupta & Wolfgang Ketter, 2022. "Cognitive Challenges in Human–Artificial Intelligence Collaboration: Investigating the Path Toward Productive Delegation," Information Systems Research, INFORMS, vol. 33(2), pages 678-696, June.
    15. Maha Shaikh & Emmanuelle Vaast, 2023. "Algorithmic Interactions in Open Source Work," Information Systems Research, INFORMS, vol. 34(2), pages 744-765, June.
    16. Singh, Nidhi & Jain, Monika & Kamal, Muhammad Mustafa & Bodhi, Rahul & Gupta, Bhumika, 2024. "Technological paradoxes and artificial intelligence implementation in healthcare. An application of paradox theory," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    17. Goutier, Marc & Diebel, Christopher & Adam, Martin & Benlian, Alexander, 2024. "Proactive and Reactive Help from Intelligent Agents in Identity-Relevant Tasks," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 142985, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    18. Alexander Benlian & Martin Wiener & W. Alec Cram & Hanna Krasnova & Alexander Maedche & Mareike Möhlmann & Jan Recker & Ulrich Remus, 2022. "Algorithmic Management," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 64(6), pages 825-839, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:4:p:747-763. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.