Adapting Reinforcement Learning Treatment Policies Using Limited Data to Personalize Critical Care
Author
Abstract
Suggested Citation
DOI: 10.1287/ijds.2022.0015
Download full text from publisher
References listed on IDEAS
- Diana M. Negoescu & Kostas Bimpikis & Margaret L. Brandeau & Dan A. Iancu, 2018. "Dynamic Learning of Patient Response Types: An Application to Treating Chronic Diseases," Management Science, INFORMS, vol. 64(8), pages 3469-3488, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Preil, Deniz & Krapp, Michael, 2022. "Bandit-based inventory optimisation: Reinforcement learning in multi-echelon supply chains," International Journal of Production Economics, Elsevier, vol. 252(C).
- Wenjuan Fan & Yang Zong & Subodha Kumar, 2022. "Optimal treatment of chronic kidney disease with uncertainty in obtaining a transplantable kidney: an MDP based approach," Annals of Operations Research, Springer, vol. 316(1), pages 269-302, September.
- Wei Chen & Yixin Lu & Liangfei Qiu & Subodha Kumar, 2021. "Designing Personalized Treatment Plans for Breast Cancer," Information Systems Research, INFORMS, vol. 32(3), pages 932-949, September.
- Kaustav Das & Nicolas Klein, 2020. "Do Stronger Patents Lead to Faster Innovation? The Effect of Duplicative Search," Discussion Papers in Economics 20/03, Division of Economics, School of Business, University of Leicester.
- Mintz, Yonatan & Aswani, Anil & Kaminsky, Philip & Flowers, Elena & Fukuoka, Yoshimi, 2023. "Behavioral analytics for myopic agents," European Journal of Operational Research, Elsevier, vol. 310(2), pages 793-811.
- Kaustav Das & Nicolas Klein, 2024. "Do Stronger Patents Lead To Faster Innovation? The Effect Of Clustered Search," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 65(2), pages 915-954, May.
- Hao Zhang, 2022. "Analytical Solution to a Discrete-Time Model for Dynamic Learning and Decision Making," Management Science, INFORMS, vol. 68(8), pages 5924-5957, August.
More about this item
Keywords
artificial neural networks and deep learning; stochastic processes; learning and adaptive systems in artificial intelligence; Markov and semi-Markov decision processes; Bayesian problems;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijds:v:1:y:2022:i:1:p:27-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.