IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v2y2003i2p175-192.html
   My bibliography  Save this article

Prior Information In Stochastic Optimization: Quasigradient Methods

Author

Listed:
  • Francisco Venegas-Martínez

    (Tecnológico de Monterrey, Campus Ciudad de México)

  • Gilberto Pérez-Lechuga

    (Tecnológico de Monterrey, Campus Ciudad de México)

Abstract

En este trabajo, se extiende el método de cuasi-gradiente estocástico cuando hay información a priori sobre la región en donde es probable encontrar direcciones descendentes. Nuestra extensión utiliza los estimadores de subgradiente de máxima entropía y de mínima entropía cruzada que incorporan la información a priori en la forma de valores esperados. Asimismo, analizamos varios patrones información a príori, y proporcionamos las condiciones de la convergencia para el método propuesto. Por último, obtenemos una representación de la distribución límite para la información esperada, la cual es proporcionada por una sucesión de estimadores de los subgradientes generados por el método propuesto.

Suggested Citation

  • Francisco Venegas-Martínez & Gilberto Pérez-Lechuga, 2003. "Prior Information In Stochastic Optimization: Quasigradient Methods," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 2(2), pages 175-192, Junio 200.
  • Handle: RePEc:imx:journl:v:2:y:2003:i:2:p:175-192
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/primera/article/view/151
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    Stochastic quasigradient methods; Information theory;

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:2:y:2003:i:2:p:175-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.