IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v15y2020isneap577-588.html
   My bibliography  Save this article

Granger revisited: t values and the empirical OLS bias with stationary and non-stationary time series using Monte Carlo simulations

Author

Listed:
  • Carlos Guerrero de Lizardi

    (Universidad Nacional Autónoma de México, México)

Abstract

La realización de un análisis estadístico confiable se fundamenta en el reconocimiento de las características estadísticas de las series de tiempo en juego y de los supuestos probabilísticos subyacentes del modelo aplicado. Nuestro propósito es ilustrar este tipo de análisis utilizando algunas ideas de Granger. Nuestros resultados de Monte Carlo muestran que en presencia de series de tiempo estacionarias y no estacionarias, la inferencia basada en los mínimos cuadrados ordinarios puede ser engañosa. Abordamos gráficamente la distribución empírica del sesgo del estimador y el inconveniente del uso de errores estándar que subestiman su verdadera variación. Recomendaremos seguir las sugerencias de Granger, que destacamos con originalidad utilizando una perspectiva desde la "medición en economía". Nuestros ejercicios cuantitativos son replicables en la medida en que compartimos completamente nuestros códigos y utilizamos la base de datos de acceso abierto del documento seminal escrito por Nelson y Plosser (1982). Nuestra conclusión principal es simple: los investigadores empíricos deben ser absolutamente cautelosos al momento de extraer conclusiones cualitativas basadas en una inferencia estándar de mínimos cuadrados ordinarios realizada en el contexto de un análisis de regresión.

Suggested Citation

  • Carlos Guerrero de Lizardi, 2020. "Granger revisited: t values and the empirical OLS bias with stationary and non-stationary time series using Monte Carlo simulations," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 15(SNEA), pages 577-588, Agosto 20.
  • Handle: RePEc:imx:journl:v:15:y:2020:i:snea:p:577-588
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/547
    Download Restriction: no
    ---><---

    More about this item

    Keywords

    análisis estadístico confiable; inferencia estándar basada en los MCO; sesgo empírico; replicabilidad; medición en economía;
    All these keywords.

    JEL classification:

    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C87 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Econometric Software

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:15:y:2020:i:snea:p:577-588. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.