IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v15y2020i1p1-16.html
   My bibliography  Save this article

Hierarchical PCA and Applications to Portfolio Management

Author

Listed:
  • Marco Avellaneda

    (Courant Institute of Mathematical Sciences, NYU)

Abstract

Es ampliamente conocido que los factores de riesgo comunes derivados del PCA más allá de la primera eigenportafolio son generalmente difíciles de interpretar y, por lo tanto, de utilizar en la gestión práctica de la cartera. Exploramos un enfoque alternativo (HPCA) que hace un fuerte uso de la partición del mercado en sectores. Demostramos que este enfoque no conduce a la pérdida de información con respecto al PCA en el caso de la renta variable (constituidos por el S&P 500) y también que los factores comunes asociados admiten interpretaciones simples. El modelo también se puede utilizar en mercados en los que los sectores tienen información asincrónica de precios, como single-name swaps de incumplimiento de crédito, generalizando las obras de Cont y Kan (2011) e Ivanov (2016).

Suggested Citation

  • Marco Avellaneda, 2020. "Hierarchical PCA and Applications to Portfolio Management," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 15(1), pages 1-16, Enero - M.
  • Handle: RePEc:imx:journl:v:15:y:2020:i:1:p:1-16
    as

    Download full text from publisher

    File URL: https://www.remef.org.mx/index.php/remef/article/view/446
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Dachuan, 2024. "High frequency principal component analysis based on correlation matrix that is robust to jumps, microstructure noise and asynchronous observation times," Journal of Econometrics, Elsevier, vol. 240(1).
    2. Rama Cont, 2023. "In memoriam: Marco Avellaneda (1955–2022)," Mathematical Finance, Wiley Blackwell, vol. 33(1), pages 3-15, January.
    3. Choi, Jungjun & Yang, Xiye, 2022. "Asymptotic properties of correlation-based principal component analysis," Journal of Econometrics, Elsevier, vol. 229(1), pages 1-18.

    More about this item

    Keywords

    returns; blocks; PCA; HPCA; portfolio;
    All these keywords.

    JEL classification:

    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics
    • C65 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Miscellaneous Mathematical Tools
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:15:y:2020:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.