IDEAS home Printed from https://ideas.repec.org/a/imx/journl/v12y2017i4p365-388.html
   My bibliography  Save this article

Estimation of Market Risk Measures in Mexican Financial Time Series

Author

Listed:
  • Alberto Saavedra Espinosa

    (Universidad Nacional Autónoma de México, Facultad de Ciencias)

Abstract

Los objetivos de este trabajo son investigar si: i) un modelo GARCH con innovaciones modeladas mediante una Distribución Pareto Generalizada (DPG), complementado con un pronóstico EWMA de volatilidad para considerar problemas prácticos que pueden surgir en aplicaciones GARCH que comprenden largos periodos de tiempo, estima adecuadamente medidas de riesgo (VaR y Expected Shortfall) para series financierasmexicanas a altos niveles de confianza; ii) las estimaciones de dicho modelo son mejores que aquellas entregadas por un GARCH con innovaciones Gaussianas o t-Student. Nuestras evaluaciones de calidad y comparación entre modelos consisten de backtests de las medidas de riesgo de cada método utilizado en el presente artículo. Nuestros resultados muestran que: i) la metodología utilizada estima apropiadamente nuestras dos medidas de riesgo; ii) el modelo GARCH-DPG entrega mejores resultados que los modelos GARCH-Normal y GARCH-t-Student. Nuestros resultados se limitan a estimaciones de medidas de riesgo a un día. Hasta donde sabemos, nuestros resultados sobre el Expected Shortfall son los primeros de su clase para series mexicanas. Concluimos que el estudio alcanzó sus objetivos y existen importantes áreas de oportunidad para estudios posteriores.

Suggested Citation

  • Alberto Saavedra Espinosa, 2017. "Estimation of Market Risk Measures in Mexican Financial Time Series," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 12(4), pages 365-388, Octubre-D.
  • Handle: RePEc:imx:journl:v:12:y:2017:i:4:p:365-388
    as

    Download full text from publisher

    File URL: http://www.remef.org.mx/index.php/remef/article/view/234/295
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asger Lunde & Peter R. Hansen, 2005. "A forecast comparison of volatility models: does anything beat a GARCH(1,1)?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 873-889.
    2. L. Kourouma & Denis Dupré & G. Sanfilippo & O. Taramasco, 2011. "Extreme Value at Risk and Expected Shortfall during Financial Crisis," Post-Print halshs-00658495, HAL.
    3. McNeil, Alexander J. & Frey, Rudiger, 2000. "Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach," Journal of Empirical Finance, Elsevier, vol. 7(3-4), pages 271-300, November.
    4. L. Kourouma & Denis Dupré & O. Taramasco & G. Sanfilippo, 2011. "Extreme Value at Risk and Expected Shortfall during Financial Crisis," Post-Print halshs-00650913, HAL.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. James M. O'Brien & Pawel J. Szerszen, 2014. "An Evaluation of Bank VaR Measures for Market Risk During and Before the Financial Crisis," Finance and Economics Discussion Series 2014-21, Board of Governors of the Federal Reserve System (U.S.).
    2. O’Brien, James & Szerszeń, Paweł J., 2017. "An evaluation of bank measures for market risk before, during and after the financial crisis," Journal of Banking & Finance, Elsevier, vol. 80(C), pages 215-234.
    3. Zaichao Du & Juan Carlos Escanciano, 2017. "Backtesting Expected Shortfall: Accounting for Tail Risk," Management Science, INFORMS, vol. 63(4), pages 940-958, April.
    4. Kokoszka Piotr & Miao Hong & Stoev Stilian & Zheng Ben, 2019. "Risk Analysis of Cumulative Intraday Return Curves," Journal of Time Series Econometrics, De Gruyter, vol. 11(2), pages 1-31, July.
    5. Berens, Tobias & Weiß, Gregor N.F. & Wied, Dominik, 2015. "Testing for structural breaks in correlations: Does it improve Value-at-Risk forecasting?," Journal of Empirical Finance, Elsevier, vol. 32(C), pages 135-152.
    6. Alfonso Novales & Laura Garcia-Jorcano, 2019. "Backtesting Extreme Value Theory models of expected shortfall," Documentos de Trabajo del ICAE 2019-24, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    7. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    8. Raymond Knott & Marco Polenghi, 2006. "Assessing central counterparty margin coverage on futures contracts using GARCH models," Bank of England working papers 287, Bank of England.
    9. Lyu, Yongjian & Qin, Fanshu & Ke, Rui & Yang, Mo & Chang, Jianing, 2024. "Forecasting the VaR of the crude oil market: A combination of mixed data sampling and extreme value theory," Energy Economics, Elsevier, vol. 133(C).
    10. Claudeci Da Silva & Hugo Agudelo Murillo & Joaquim Miguel Couto, 2014. "Early Warning Systems: Análise De Ummodelo Probit De Contágio De Crise Dos Estados Unidos Para O Brasil(2000-2010)," Anais do XL Encontro Nacional de Economia [Proceedings of the 40th Brazilian Economics Meeting] 110, ANPEC - Associação Nacional dos Centros de Pós-Graduação em Economia [Brazilian Association of Graduate Programs in Economics].
    11. Duc Hong Vo & Ngoc Phu Tran & Tam Nguyen-Thanh Duong & Michael McAleer, 2019. "Risk analysis of energy in Vietnam," Documentos de Trabajo del ICAE 2019-14, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico.
    12. Wang, Lu & Ma, Feng & Liu, Jing & Yang, Lin, 2020. "Forecasting stock price volatility: New evidence from the GARCH-MIDAS model," International Journal of Forecasting, Elsevier, vol. 36(2), pages 684-694.
    13. Rossignolo, Adrian F. & Fethi, Meryem Duygun & Shaban, Mohamed, 2012. "Value-at-Risk models and Basel capital charges," Journal of Financial Stability, Elsevier, vol. 8(4), pages 303-319.
    14. Antonio Díaz & Gonzalo García-Donato & Andrés Mora-Valencia, 2017. "Risk quantification in turmoil markets," Risk Management, Palgrave Macmillan, vol. 19(3), pages 202-224, August.
    15. Wei, Yu & Chen, Wang & Lin, Yu, 2013. "Measuring daily Value-at-Risk of SSEC index: A new approach based on multifractal analysis and extreme value theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(9), pages 2163-2174.
    16. Mora-Valencia, Andrés & Rodríguez-Raga, Santiago & Vanegas, Esteban, 2021. "Skew index: Descriptive analysis, predictive power, and short-term forecast," The North American Journal of Economics and Finance, Elsevier, vol. 56(C).
    17. Caporale, Guglielmo Maria & Zekokh, Timur, 2019. "Modelling volatility of cryptocurrencies using Markov-Switching GARCH models," Research in International Business and Finance, Elsevier, vol. 48(C), pages 143-155.
    18. González-Pedraz, Carlos & Moreno, Manuel & Peña, Juan Ignacio, 2014. "Tail risk in energy portfolios," Energy Economics, Elsevier, vol. 46(C), pages 422-434.
    19. Julia S. Mehlitz & Benjamin R. Auer, 2021. "Time‐varying dynamics of expected shortfall in commodity futures markets," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 41(6), pages 895-925, June.
    20. Sobreira, Nuno & Louro, Rui, 2020. "Evaluation of volatility models for forecasting Value-at-Risk and Expected Shortfall in the Portuguese stock market," Finance Research Letters, Elsevier, vol. 32(C).

    More about this item

    Keywords

    Risk Analysis; Value at Risk; Volatility Forecasting; GARCH; Extreme Value Theory; Market Risk; Expected Shortfall;
    All these keywords.

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:imx:journl:v:12:y:2017:i:4:p:365-388. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Ricardo Mendoza (email available below). General contact details of provider: https://www.remef.org.mx/index.php/remef/index .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.