IDEAS home Printed from https://ideas.repec.org/a/igg/jwsr00/v18y2021i2p1-24.html
   My bibliography  Save this article

Resource Allocation Scheduling Algorithm Based on Incomplete Information Dynamic Game for Edge Computing

Author

Listed:
  • Bo Wang

    (School of Software Technology, Dalian University of Technology, Dalian, China & School of Applied Technology, University of Science and Technology Liaoning, Anshan, China & Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China)

  • Mingchu Li

    (School of Software Technology, Dalian University of Technology, Dalian, China & Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian, China)

Abstract

With the advent of the 5G era, the demands for features such as low latency and high concurrency are becoming increasingly significant. These sophisticated new network applications and services require huge gaps in network transmission bandwidth, network transmission latency, and user experience, making cloud computing face many technical challenges in terms of applicability. In response to cloud computing's shortcomings, edge computing has come into its own. However, many factors affect task offloading and resource allocation in the edge computing environment, such as the task offload latency, energy consumption, smart device mobility, end-user power, and other issues. This paper proposes a dynamic multi-winner game model based on incomplete information to solve multi-end users' task offloading and edge resource allocation. First, based on the history of end-users storage in edge data centers, a hidden Markov model can predict other end-users' bid prices at time t. Based on these predicted auction prices, the model determines their bids. A dynamic multi-winner game model is used to solve the offload strategy that minimizes latency, energy consumption, cost, and to maximizes end-user satisfaction at the edge data center. Finally, the authors designed a resource allocation algorithm based on different priorities and task types to implement resource allocation in edge data centers. To ensure the prediction model's accuracy, the authors also use the expectation-maximization algorithm to learn the model parameters. Comparative experimental results show that the proposed model can better results in time delay, energy consumption, and cost.

Suggested Citation

  • Bo Wang & Mingchu Li, 2021. "Resource Allocation Scheduling Algorithm Based on Incomplete Information Dynamic Game for Edge Computing," International Journal of Web Services Research (IJWSR), IGI Global, vol. 18(2), pages 1-24, April.
  • Handle: RePEc:igg:jwsr00:v:18:y:2021:i:2:p:1-24
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWSR.2021040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jwsr00:v:18:y:2021:i:2:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.