IDEAS home Printed from https://ideas.repec.org/a/igg/jwsr00/v13y2016i4p1-18.html
   My bibliography  Save this article

Minimum Data Base Determination using Machine Learning

Author

Listed:
  • Angel Ferrnando Kuri-Morales

    (Departamento de Computación, Instituto Tecnológico Autónomo de México, Mexico City, Mexico)

Abstract

The exploitation of large data bases frequently implies the investment of large and, usually, expensive resources both in terms of the storage and processing time required. It is possible to obtain equivalent reduced data sets where the statistical information of the original data may be preserved while dispensing with redundant constituents. Therefore, the physical embodiment of the relevant features of the data base is more economical. The author proposes a method where we may obtain an optimal transformed representation of the original data which is, in general, considerably more compact than the original without impairing its informational content. To certify the equivalence of the original data set (FD) and the reduced one (RD), the author applies an algorithm which relies in a Genetic Algorithm (GA) and a multivariate regression algorithm (AA). Through the combined application of GA and AA the equivalent behavior of both FD and RD may be guaranteed with a high degree of statistical certainty.

Suggested Citation

  • Angel Ferrnando Kuri-Morales, 2016. "Minimum Data Base Determination using Machine Learning," International Journal of Web Services Research (IJWSR), IGI Global, vol. 13(4), pages 1-18, October.
  • Handle: RePEc:igg:jwsr00:v:13:y:2016:i:4:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWSR.2016100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jwsr00:v:13:y:2016:i:4:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.