IDEAS home Printed from https://ideas.repec.org/a/igg/jwltt0/v17y2022i2p1-9.html
   My bibliography  Save this article

Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm

Author

Listed:
  • Sangeetha K.

    (Kebri Dehar University, Kebri Dehar, Ethiopia)

  • Shitharth S.

    (Kebri Dehar University, Kebri Dehar, Ethiopia)

  • Gouse Baig Mohammed

    (Vardhaman College of Engineering, India)

Abstract

In Self-Organizing Maps (SOM) are unsupervised neural networks that cluster high dimensional data and transform complex inputs into easily understandable inputs. To find the closest distance and weight factor, it maps high dimensional input space to low dimensional input space. The Closest node to data point is denoted as a neuron. It classifies the input data based on these neurons. The reduction of dimensionality and grid clustering using neurons makes to observe similarities between the data. In our proposed Mutated Self Organizing Maps (MSOM) approach, we have two intentions. One is to eliminate the learning rate and to decrease the neighborhood size and the next one is to find out the outliers in the network. The first one is by calculating the median distance (MD) between each node with its neighbor nodes. Then those median values are compared with one another. In case, if any of the MD values significantly varies from the rest then it is declared as anomaly nodes. In the second phase, we find out the quantization error (QE) in each instance from the cluster center.

Suggested Citation

  • Sangeetha K. & Shitharth S. & Gouse Baig Mohammed, 2022. "Enhanced SCADA IDS Security by Using MSOM Hybrid Unsupervised Algorithm," International Journal of Web-Based Learning and Teaching Technologies (IJWLTT), IGI Global, vol. 17(2), pages 1-9, March.
  • Handle: RePEc:igg:jwltt0:v:17:y:2022:i:2:p:1-9
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJWLTT.20220301.oa2
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alaa O. Khadidos & Hariprasath Manoharan & Shitharth Selvarajan & Adil O. Khadidos & Khaled H. Alyoubi & Ayman Yafoz, 2022. "A Classy Multifacet Clustering and Fused Optimization Based Classification Methodologies for SCADA Security," Energies, MDPI, vol. 15(10), pages 1-24, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jwltt0:v:17:y:2022:i:2:p:1-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.