IDEAS home Printed from https://ideas.repec.org/a/igg/jtd000/v13y2022i1p1-17.html
   My bibliography  Save this article

ML-Based Model for Risk Prediction in Software Requirements

Author

Listed:
  • Muhammad Shahroz Gul Qureshi

    (City University of Science and Information Technology, Pakistan)

  • Bilal Khan

    (City University of Science and Information Technology, Pakistan)

  • Muhammad Arshad

    (City University of Science and Information Technology, Pakistan)

Abstract

Software risk prediction is the most sensitive and crucial activity of the SDLC. It may lead to the success or failure of the project. The requirement gathering stage is the most important and challenging stage of the SDLC. The risks should be tackled at this stage and saved to be used in future projects. However, a model is proposed for the prediction of software requirement risks using the requirement risk dataset and ML classification. This research study proposed a model for risk prediction in software requirements that will be evaluated using several evaluation measures (e.g., precision, F-measure, MCC, recall, and accuracy). For the completion of this study, the dataset is taken from Zenodo repository. The model is evaluated using ML techniques. After the finding and analysis of results, DT shows best performance with accuracy of 99%.

Suggested Citation

  • Muhammad Shahroz Gul Qureshi & Bilal Khan & Muhammad Arshad, 2022. "ML-Based Model for Risk Prediction in Software Requirements," International Journal of Technology Diffusion (IJTD), IGI Global, vol. 13(1), pages 1-17, January.
  • Handle: RePEc:igg:jtd000:v:13:y:2022:i:1:p:1-17
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJTD.314235
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jtd000:v:13:y:2022:i:1:p:1-17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.