IDEAS home Printed from https://ideas.repec.org/a/igg/jswis0/v20y2024i1p1-15.html
   My bibliography  Save this article

Semantic Web Insights Into the Classification of Folk Paper-Cut Cultural Genes

Author

Listed:
  • Chen Xuemiao

    (ChangSha Normal University, Hunan, China)

  • Varsha Arya

    (Department of Business Administration, Asia University, Taiwan)

Abstract

This study aims to classify folk paper-cut patterns by regional culture, leveraging Semantic Web and LSTM technologies to discern how these patterns reflect distinct cultural characteristics. By developing an LSTM model capable of recognizing and categorizing these patterns, our study not only demonstrates high accuracy in classifying regional cultural genes but also reveals the depth of cultural heritage embedded in paper-cut art. The findings underscore the potential of computational methods in understanding and preserving the rich tapestry of cultural expressions through paper cuts. This work sets a foundation for future explorations into the digital preservation of cultural heritage, highlighting the critical role of technology in safeguarding and interpreting traditional arts in the context of regional culture.

Suggested Citation

  • Chen Xuemiao & Varsha Arya, 2024. "Semantic Web Insights Into the Classification of Folk Paper-Cut Cultural Genes," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 20(1), pages 1-15, January.
  • Handle: RePEc:igg:jswis0:v:20:y:2024:i:1:p:1-15
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.350266
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jswis0:v:20:y:2024:i:1:p:1-15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.