IDEAS home Printed from https://ideas.repec.org/a/igg/jswis0/v19y2023i1p1-21.html
   My bibliography  Save this article

A Lightweight Method of Knowledge Graph Convolution Network for Collaborative Filtering

Author

Listed:
  • Xin Zhang

    (School of Artificial Intelligence and Big data, Hefei University, China)

  • Shaohua Kuang

    (School of Artificial Intelligence and Big data, Hefei University, China)

Abstract

In recent years, knowledge-aware recommendation systems have gained popularity as a solution to address the challenges of data sparsity and cold start in collaborative filtering. However, traditional knowledge graph convolutional networks impose significant computational burdens during training, demanding substantial resources and increasing the cost of recommendations. To address this issue, this article proposes a lightweight knowledge graph convolutional network for collaborative filtering (LKGCF). LKGCF eliminates the feature transformation and nonlinear activation components, by focusing on essential elements such as neighborhood aggregation and layer combination. LKGCF captures the user's long-distance personalized interests on the knowledge graph by sampling from neighborhood information and constructing a weighted sum of item embeddings. Experimental results demonstrate that the proposed model is easy to train and implement due to its coherence and simplicity. Furthermore, notable improvements in recommendation performance are observed compared to strong baselines.

Suggested Citation

  • Xin Zhang & Shaohua Kuang, 2023. "A Lightweight Method of Knowledge Graph Convolution Network for Collaborative Filtering," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 19(1), pages 1-21, January.
  • Handle: RePEc:igg:jswis0:v:19:y:2023:i:1:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.327353
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Adebayo Adewumi Abayomi-Alli & Oluwasefunmi 'Tale Arogundade & Sanjay Misra & Mulkah Opeyemi Akala & Abiodun Motunrayo Ikotun & Bolanle Adefowoke Ojokoh, 2021. "An Ontology-Based Information Extraction System for Organic Farming," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 17(2), pages 79-99, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bikram Pratim Bhuyan & Ravi Tomar & Amar Ramdane Cherif, 2022. "A Systematic Review of Knowledge Representation Techniques in Smart Agriculture (Urban)," Sustainability, MDPI, vol. 14(22), pages 1-36, November.
    2. Nicola Capuano & Pasquale Foggia & Luca Greco & Pierluigi Ritrovato, 2022. "A Semantic Framework Supporting Multilayer Networks Analysis for Rare Diseases," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 18(1), pages 1-22, January.
    3. Jean Vincent Fonou-Dombeu & Nadia Naidoo & Micara Ramnanan & Rachan Gowda & Sahil Ramkaran Lawton, 2021. "OntoCSA: A Climate-Smart Agriculture Ontology," International Journal of Agricultural and Environmental Information Systems (IJAEIS), IGI Global, vol. 12(4), pages 1-20, October.
    4. Taheri, Fatemeh & D'Haese, Marijke & Fiems, Dieter & Azadi, Hossein, 2022. "The intentions of agricultural professionals towards diffusing wireless sensor networks: Application of technology acceptance model in Southwest Iran," Technological Forecasting and Social Change, Elsevier, vol. 185(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jswis0:v:19:y:2023:i:1:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.