IDEAS home Printed from https://ideas.repec.org/a/igg/jswis0/v12y2016i2p1-24.html
   My bibliography  Save this article

SEMCON: A Semantic and Contextual Objective Metric for Enriching Domain Ontology Concepts

Author

Listed:
  • Zenun Kastrati

    (Norwegian University of Science and Technology, Gjøvik, Norway)

  • Ali Shariq Imran

    (Norwegian University of Science and Technology, Gjøvik, Norway)

  • Sule Yildirim-Yayilgan

    (Norwegian University of Science and Technology, Gjøvik, Norway)

Abstract

This paper presents a novel concept enrichment objective metric combining contextual and semantic information of terms extracted from the domain documents. The proposed metric is called SEMCON which stands for semantic and contextual objective metric. It employs a hybrid learning approach utilizing functionalities from statistical and linguistic ontology learning techniques. The metric also introduced for the first time two statistical features that have shown to improve the overall score ranking of highly relevant terms for concept enrichment. Subjective and objective experiments are conducted in various domains. Experimental results (F1) from computer domain show that SEMCON achieved better performance in contrast to tf*idf, and LSA methods, with 12.2%, 21.8%, and 24.5% improvement over them respectively. Additionally, an investigation into how much each of contextual and semantic components contributes to the overall task of concept enrichment is conducted and the obtained results suggest that a balanced weight gives the best performance.

Suggested Citation

  • Zenun Kastrati & Ali Shariq Imran & Sule Yildirim-Yayilgan, 2016. "SEMCON: A Semantic and Contextual Objective Metric for Enriching Domain Ontology Concepts," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 12(2), pages 1-24, April.
  • Handle: RePEc:igg:jswis0:v:12:y:2016:i:2:p:1-24
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSWIS.2016040101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rolando Quintero & Miguel Torres-Ruiz & Magdalena Saldaña-Pérez & Carlos Guzmán Sánchez-Mejorada & Felix Mata-Rivera, 2023. "A Conceptual Graph-Based Method to Compute Information Content," Mathematics, MDPI, vol. 11(18), pages 1-22, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jswis0:v:12:y:2016:i:2:p:1-24. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.