IDEAS home Printed from https://ideas.repec.org/a/igg/jswis0/v10y2014i1p1-26.html
   My bibliography  Save this article

Nesting Strategies for Enabling Nimble MapReduce Dataflows for Large RDF Data

Author

Listed:
  • Padmashree Ravindra

    (Department of Computer Science, North Carolina State University, Raleigh, NC, USA)

  • Kemafor Anyanwu

    (Department of Computer Science, North Carolina State University, Raleigh, NC, USA)

Abstract

Graph and semi-structured data are usually modeled in relational processing frameworks as “thin” relations (node, edge, node) and processing such data involves a lot of join operations. Intermediate results of joins with multi-valued attributes or relationships, contain redundant subtuples due to repetition of single-valued attributes. The amount of redundant content is high for real-world multi-valued relationships in social network (millions of Twitter followers of popular celebrities) or biological (multiple references to related proteins) datasets. In MapReduce-based platforms such as Apache Hive and Pig, redundancy in intermediate results contributes avoidable costs to the overall I/O, sorting, and network transfer overhead of join-intensive workloads due to longer workflows. Consequently, providing techniques for dealing with such redundancy will enable more nimble execution of such workflows. This paper argues for the use of a nested data model for representing intermediate data concisely using nesting-aware dataflow operators that allow for lazy and partial unnesting strategies. This approach reduces the overall I/O and network footprint of a workflow by concisely representing intermediate results during most of a workflow's execution, until complete unnesting is absolutely necessary. The proposed strategies are integrated into Apache Pig and experimental evaluation over real-world and synthetic benchmark datasets confirms their superiority over relational-style MapReduce systems such as Apache Pig and Hive.

Suggested Citation

  • Padmashree Ravindra & Kemafor Anyanwu, 2014. "Nesting Strategies for Enabling Nimble MapReduce Dataflows for Large RDF Data," International Journal on Semantic Web and Information Systems (IJSWIS), IGI Global, vol. 10(1), pages 1-26, January.
  • Handle: RePEc:igg:jswis0:v:10:y:2014:i:1:p:1-26
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/ijswis.2014010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jswis0:v:10:y:2014:i:1:p:1-26. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.