Author
Listed:
- Hanaa Ibrahim Abu Zahra
(Information Systems Department, Faculty of Computers and Informatics, Benha University, Benha, Egypt)
- Shaker El-Sappagh
(Information Systems Department, Faculty of Computers and Informatics, Benha University, Benha, Egypt)
- Tarek Ahmef El Shishtawy
(Information Systems Department, Faculty of Computers and Informatics, Benha University, Benha, Egypt)
Abstract
Most frequent itemset mining algorithms (FIMA) discover hidden relationships from unrelated items. They find the most frequent itemsets depending only on the frequency of the item's existence in the dataset. These algorithms give all items the same importance, and neglect the differences in importance of the items. They assume the full certainty of data, but in most cases, real word data may be uncertain. As a result, the data could be incomplete and/or imprecise. These two problems are the most common challenges that face FIMA algorithms. Some new algorithms proposed some solutions to face these two issues separately. In other words, some algorithms handle item importance only, and others handle uncertainty only. Few algorithms dealt with the two issues together. In this article, the single scan for weighted itemsets over the uncertain database (SSU-Wfim) is proposed. It depends on the single scan frequent itemsets algorithm (SS_FIM), and enhances it to deal with weighted items in an uncertain database. SSU_WFIM deals with the uncertainty of data by giving each item in a transaction an additional value to indicate occurrence likelihood. It gives the items different values to define the weight of them. It uses a table called Ptable to save the items and their probability values. This table is used to generate all possible candidates itemsets. The results indicate the high performance in aspects of runtime, memory consumption and scalability of SSU-Wfim comparing with the UApriori algorithm. The proposed algorithm saves time and memory with a percentage exceeds 70% for all tested datasets.
Suggested Citation
Hanaa Ibrahim Abu Zahra & Shaker El-Sappagh & Tarek Ahmef El Shishtawy, 2020.
"A Proposed Frequent Itemset Discovery Algorithm Based on Item Weights and Uncertainty,"
International Journal of Sociotechnology and Knowledge Development (IJSKD), IGI Global, vol. 12(1), pages 98-118, January.
Handle:
RePEc:igg:jskd00:v:12:y:2020:i:1:p:98-118
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jskd00:v:12:y:2020:i:1:p:98-118. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.