IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v9y2018i4p47-64.html
   My bibliography  Save this article

Improving Adaptive Filters for Active Noise Control Using Particle Swarm Optimization

Author

Listed:
  • Rodrigo P. Monteiro

    (University of Pernambuco, Recife, Brazil)

  • Gabriel A. Lima

    (University of Pernambuco, Recife, Brazil)

  • José P. G. Oliveira

    (FITec, Recife, Brazil)

  • Daniel S. C. Cunha

    (FITec, Recife, Brazil)

  • Carmelo J. A. Bastos-Filho

    (University of Pernambuco, Recife, Brazil)

Abstract

The excessive exposure to certain kinds of acoustic noise can lead to health problems. To avoid this situation, the use of noise attenuation devices is a standard solution. Among those devices, the active noise control (ANC) systems have gained prominence over the years, mainly due to the technological development and costs reduction of electronic components. Despite good performance of ANC concerning low-frequency noise attenuation, the convergence speed for this kind of system is still an important issue when it deals with real-time applications in dynamic environments. This article presents an alternative solution to accelerate the active attenuation system response. This solution is based on the use of sets of coefficients, which are employed during the adaptive filter initialization and are obtained via a training process with particle swarm optimization (PSO). Two objective functions were tested: one based on the response time itself and the other one based on the magnitude reduction of the residual noise. The coefficients obtained through this process provided response time reductions up to 98.3% concerning adaptive filters initialized with null coefficients. The article is an extended version of the conference paper Accelerating the Convergence of Adaptive Filters for Active Noise Control Using Particle Swarm Optimization, published in LA-CCI 2017.

Suggested Citation

  • Rodrigo P. Monteiro & Gabriel A. Lima & José P. G. Oliveira & Daniel S. C. Cunha & Carmelo J. A. Bastos-Filho, 2018. "Improving Adaptive Filters for Active Noise Control Using Particle Swarm Optimization," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 9(4), pages 47-64, October.
  • Handle: RePEc:igg:jsir00:v:9:y:2018:i:4:p:47-64
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2018100103
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Elias Amancio Siqueira-Filho & Maira Farias Andrade Lira & Attilio Converti & Hugo Valadares Siqueira & Carmelo J. A. Bastos-Filho, 2023. "Predicting Thermoelectric Power Plants Diesel/Heavy Fuel Oil Engine Fuel Consumption Using Univariate Forecasting and XGBoost Machine Learning Models," Energies, MDPI, vol. 16(7), pages 1-27, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:9:y:2018:i:4:p:47-64. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.