IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v9y2018i1p39-57.html
   My bibliography  Save this article

A Grayscale Segmentation Approach Using the Firefly Algorithm and the Gaussian Mixture Model

Author

Listed:
  • Donatella Giuliani

    (University of Bologna, Fano, Italy)

Abstract

In this article, the author proposes an unsupervised grayscale image segmentation method based on a combination of the Firefly Algorithm and the Gaussian Mixture Model. Firstly, the Firefly Algorithm has been applied in a histogram-based research of cluster centroids. The Firefly Algorithm is a stochastic global optimization technique, centred on the flashing characteristics of fireflies. In this histogram-based segmentation approach, it is employed to determine the number of clusters and to select the gray levels for grouping pixels into homogeneous regions. Successively these gray values are used in the initialization step for the parameter estimation of a Gaussian Mixture Model. The parametric probability density function of a Gaussian Mixture Model is represented as a weighted sum of Gaussian components, whose parameters are evaluated applying the iterative Expectation-Maximization technique. The coefficients of the linear super-position of Gaussians can be thought as prior probabilities of each component. Applying the Bayes rule, the posterior probabilities of the grayscale intensities have been evaluated, therefore their maxima are used to assign each pixel to the clusters, according to their gray levels.

Suggested Citation

  • Donatella Giuliani, 2018. "A Grayscale Segmentation Approach Using the Firefly Algorithm and the Gaussian Mixture Model," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 9(1), pages 39-57, January.
  • Handle: RePEc:igg:jsir00:v:9:y:2018:i:1:p:39-57
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2018010103
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:9:y:2018:i:1:p:39-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.