IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v1y2010i1p1-16.html
   My bibliography  Save this article

Bacterial Foraging Optimization

Author

Listed:
  • Kevin M. Passino

    (The Ohio State University, USA)

Abstract

The bacterial foraging optimization (BFO) algorithm mimics how bacteria forage over a landscape of nutrients to perform parallel nongradient optimization. In this article, the author provides a tutorial on BFO, including an overview of the biology of bacterial foraging and the pseudo-code that models this process. The algorithms features are briefly compared to those in genetic algorithms, other bio-inspired methods, and nongradient optimization. The applications and future directions of BFO are also presented.

Suggested Citation

  • Kevin M. Passino, 2010. "Bacterial Foraging Optimization," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 1(1), pages 1-16, January.
  • Handle: RePEc:igg:jsir00:v:1:y:2010:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jsir.2010010101
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    2. Yingying Liao & Weiguo Zhao & Liying Wang, 2021. "Improved Manta Ray Foraging Optimization for Parameters Identification of Magnetorheological Dampers," Mathematics, MDPI, vol. 9(18), pages 1-38, September.
    3. Behera, Sasmita & Sahoo, Subhrajit & Pati, B.B., 2015. "A review on optimization algorithms and application to wind energy integration to grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 214-227.
    4. Surafel Luleseged Tilahun & Mohamed A. Tawhid, 2019. "Swarm hyperheuristic framework," Journal of Heuristics, Springer, vol. 25(4), pages 809-836, October.
    5. Shuang Wang & Abdelazim G. Hussien & Heming Jia & Laith Abualigah & Rong Zheng, 2022. "Enhanced Remora Optimization Algorithm for Solving Constrained Engineering Optimization Problems," Mathematics, MDPI, vol. 10(10), pages 1-32, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:1:y:2010:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.