IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v14y2023i1p1-21.html
   My bibliography  Save this article

Breast Cancer Classification With Microarray Gene Expression Data Based on Improved Whale Optimization Algorithm

Author

Listed:
  • S. Sathiya Devi

    (University College of Engineering, Bharathidasan Institute of Technology, Trichy, India)

  • Prithiviraj K.

    (University College of Engineering, Bharathidasan Institute of Technology, Trichy, India)

Abstract

Breast cancer is one of the most common and dangerous cancer types in women worldwide. Since it is generally a genetic disease, microarray technology-based cancer prediction is technically significant among lot of diagnosis methods. The microarray gene expression data contains fewer samples with many redundant and noisy genes. It leads to inaccurate diagnose and low prediction accuracy. To overcome these difficulties, this paper proposes an Improved Whale Optimization Algorithm (IWOA) for wrapper based feature selection in gene expression data. The proposed IWOA incorporates modified cross over and mutation operations to enhance the exploration and exploitation of classical WOA. The proposed IWOA adapts multiobjective fitness function, which simultaneously balance between minimization of error rate and feature selection. The experimental analysis demonstrated that, the proposed IWOA with Gradient Boost Classifier (GBC) achieves high classification accuracy of 97.7% with minimum subset of features and also converges quickly for the breast cancer dataset.

Suggested Citation

  • S. Sathiya Devi & Prithiviraj K., 2023. "Breast Cancer Classification With Microarray Gene Expression Data Based on Improved Whale Optimization Algorithm," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 14(1), pages 1-21, January.
  • Handle: RePEc:igg:jsir00:v:14:y:2023:i:1:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.317091
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:14:y:2023:i:1:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.