IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v13y2022i1p1-20.html
   My bibliography  Save this article

Dynamic Population Cooperative: Particle Swarm Optimization for Global Optimization Problems

Author

Listed:
  • Wei Li

    (Jiangxi University of Science and Technology, China)

  • Cisong Shi

    (Jiangxi University of Science and Technology, China)

  • Qing Xu

    (Jiangxi University of Science and Technology, China)

  • Ying Huang

    (Gannan Normal University, China)

Abstract

Particle swarm optimization (PSO) has attracted wide attention in the recent decade. Although PSO is an efficient and simple evolutionary algorithm and has been successfully applied to solve optimization problems in many real-world fields, premature maturation and poor local search capability remain two critical issues for PSO. Therefore, to alleviate these disadvantages, a dynamic population cooperative particle swarm optimization for global optimization problems (DPCPSO) is proposed. Firstly, to enhance local search capability, an elite neighborhood learning strategy is constructed by leveraging information from elite particles. Meanwhile, to make the particle easily jump out of the local optimum, a crossover-mutation mechanism is utilized. Finally, a dynamic population partitioning mechanism is designed to balance exploration and exploitation capabilities. 16 classic benchmark functions and 1 real-world optimization problem are used to test the proposed algorithm against with 6 typical PSO algorithms. The experimental results show that DPCPSO is statistically and significantly better than the compared algorithms for most of the test problems. Moreover, the convergence speed and convergence accuracy of DPCPSO are also significantly improved. Therefore, the algorithm is highly competitive in solving global optimization problems.

Suggested Citation

  • Wei Li & Cisong Shi & Qing Xu & Ying Huang, 2022. "Dynamic Population Cooperative: Particle Swarm Optimization for Global Optimization Problems," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 13(1), pages 1-20, January.
  • Handle: RePEc:igg:jsir00:v:13:y:2022:i:1:p:1-20
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.313664
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:13:y:2022:i:1:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.