IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v12y2021i2p1-21.html
   My bibliography  Save this article

A Nonlinear Weight-Optimized Maintainability Index of Software Metrics by Grey Wolf Optimization

Author

Listed:
  • Gokul Yenduri

    (Vignan's Foundation for Science, Technology, and Research (Deemed), India)

  • Veeranjaneyulu Naralasetti

    (Vignan's Foundation for Science, Technology, and Research (Deemed), India)

Abstract

Maintainability index (MI) is a software metric that offers measurements of the maintainability before release of the software by facilitating several substantial features of the system. In general, there is a common formula for determining the MI for all the software metrics to ensure the system's reliability. As it does not provide appropriate results regarding the reliability of the system, it is essential to focus on the next level of MI of software. Hence, this paper intends to allot an optimal weight and a constant to each software metric, which is optimized by grey wolf optimization (GWO). As a result, it can provide a new variant of MI by proposed enhanced model-GWO (EM-GWO). This optimized MI can ensure the efficiency of the respective software in such a way that it can provide an enhanced score from the system. Further, the proposed method is compared with conventional models such as enhanced model-generic algorithm (EM-GA), EM-particle swarm optimization (PSO), EM-ant bee colony (ABC), EM-differential evolution (DE), and EM-fire fly (FF), and the results are obtained.

Suggested Citation

  • Gokul Yenduri & Veeranjaneyulu Naralasetti, 2021. "A Nonlinear Weight-Optimized Maintainability Index of Software Metrics by Grey Wolf Optimization," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 12(2), pages 1-21, April.
  • Handle: RePEc:igg:jsir00:v:12:y:2021:i:2:p:1-21
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2021040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:12:y:2021:i:2:p:1-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.