IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v12y2021i1p1-16.html
   My bibliography  Save this article

Particle Swarm Optimization-Based Data Aggregation in Wireless Sensor Network: Proposed PSO-SNAP Protocol

Author

Listed:
  • Meeta Gupta

    (Jaypee Institute of Information Technology, India)

  • Adwitiya Sinha

    (Jaypee Institute of Information Technology, India)

Abstract

Wireless sensor networks have battery-operated sensor nodes, which need to be conserved to have prolonged network lifetime. The amount of power consumed for routing sensed data from the sensor node to the sink node is large. Thus, in order to optimize the energy usage in sensor network efficient data aggregation techniques are needed. Particle swarm optimization (PSO) is a speculative and evolutionary computing technique based on swarm intelligence for solving optimization problems in sensor network such as nodes deployment, node scheduling, data clustering, and aggregation. The paper proposes a PSO-based sensor network aggregation protocol (PSO-SNAP) with K-means to provide initial centroid. The PSO has been used to find the optimal aggregated value having minimum quantization error. The output of the K-means algorithm is used as an initial centroid in PSO. Apart from K-means, K-medoid and simple average has also been used to provide initial seed to the PSO algorithm and results of all three approaches are compared.

Suggested Citation

  • Meeta Gupta & Adwitiya Sinha, 2021. "Particle Swarm Optimization-Based Data Aggregation in Wireless Sensor Network: Proposed PSO-SNAP Protocol," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 12(1), pages 1-16, January.
  • Handle: RePEc:igg:jsir00:v:12:y:2021:i:1:p:1-16
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2021010101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:12:y:2021:i:1:p:1-16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.