IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v11y2020i4p1-23.html
   My bibliography  Save this article

Optimization of Text Feature Selection Process Based on Advanced Searching for News Classification

Author

Listed:
  • Khin Sandar Kyaw

    (Department of Computer Engineering, Prince of Songkla University, Thailand)

  • Somchai Limsiroratana

    (Department of Computer Engineering, Prince of Songkla University, Thailand)

Abstract

Nowadays, the culture for accessing news around the world is changed from paper format to electronic and the rate of publication for newspapers and magazines on websites have increased dramatically. Therefore, the feature selection process from high-dimensional text feature set for an automatic news classification model is becoming the top challenge because irrelevant features can degrade the accuracy with high cost computation time for classification model. In this article, six-advanced search policies based on evolutionary, swarm intelligence, nature-inspired intelligence are observed for achieving the global optimal feature subset for optimal accuracy in news classification problem. According to the experimental results, the advanced search schemes that can provide flexibility in integrating classifier in accordance with its objective function such as optimal classification performance by adjusting the rate of modification parameters for the testing data.

Suggested Citation

  • Khin Sandar Kyaw & Somchai Limsiroratana, 2020. "Optimization of Text Feature Selection Process Based on Advanced Searching for News Classification," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 11(4), pages 1-23, October.
  • Handle: RePEc:igg:jsir00:v:11:y:2020:i:4:p:1-23
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2020100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:11:y:2020:i:4:p:1-23. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.