IDEAS home Printed from https://ideas.repec.org/a/igg/jsir00/v11y2020i2p1-18.html
   My bibliography  Save this article

Swarm Intelligent Data Aggregation in Wireless Sensor Network

Author

Listed:
  • Jinil Persis Devarajan

    (National Institute of Industrial Engineering (NITIE), Mumbai, India)

  • T. Paul Robert

    (Anna University, Chennai, India)

Abstract

Data aggregation in WSNs is an interesting problem wherein data sensed by the sensors is routed to an aggregation node in an efficient way. Since the sensors are battery operated, it is very important for a routing protocol to conserve energy and also ensure load balancing and faster delivery. In this study, a multi-objective linear programming model is developed for this problem and solved using an exact algorithm applying dominance principle. In order to ensure faster convergence, routing algorithms incorporating strategies of swarms in nature such as Ants, Bees and Fireflies are adapted. In the simulation study, it is quite evident from the convergence characteristics, swarm intelligent algorithms could converge earlier than the exact algorithm with convergence time lesser by 90%. Moreover, when exact algorithm could solve smaller networks, the swarm intelligent algorithms could solve even larger network instances. Firefly algorithm is able to yield approximated pareto – optimal routes which outperforms ant colony optimization and bee colony optimization algorithms.

Suggested Citation

  • Jinil Persis Devarajan & T. Paul Robert, 2020. "Swarm Intelligent Data Aggregation in Wireless Sensor Network," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 11(2), pages 1-18, April.
  • Handle: RePEc:igg:jsir00:v:11:y:2020:i:2:p:1-18
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJSIR.2020040101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsir00:v:11:y:2020:i:2:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.