IDEAS home Printed from https://ideas.repec.org/a/igg/jsds00/v4y2013i1p79-89.html
   My bibliography  Save this article

Forecasting Direction of the S&P500 Movement Using Wavelet Transform and Support Vector Machines

Author

Listed:
  • Salim Lahmiri

    (Department of Computer Science, University of Quebec at Montreal, Montreal, QC, Canada, & ESCA School of Management, Casablanca, Morocco)

Abstract

Using the wavelet analysis for low-frequency time series extraction, we conduct out-of-sample predictions of the S&P500 price index future trend (up and down). The support vector machines (SVMs) with different kernels and parameters are used as the baseline forecasting model. The simulation results reveal that the SVMs with wavelet analysis approach outperform the SVMs with macroeconomic variables or technical indicators as predictive variables. As a result, we conclude that the wavelet transform is appropriate to capture the S&P500 trend dynamics.

Suggested Citation

  • Salim Lahmiri, 2013. "Forecasting Direction of the S&P500 Movement Using Wavelet Transform and Support Vector Machines," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 4(1), pages 79-89, January.
  • Handle: RePEc:igg:jsds00:v:4:y:2013:i:1:p:79-89
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jsds.2013010105
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aggarwal, Divya & Chandrasekaran, Shabana & Annamalai, Balamurugan, 2020. "A complete empirical ensemble mode decomposition and support vector machine-based approach to predict Bitcoin prices," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    2. Salim Lahmiri, 2016. "Features selection, data mining and finacial risk classification: a comparative study," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 23(4), pages 265-275, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsds00:v:4:y:2013:i:1:p:79-89. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.