IDEAS home Printed from https://ideas.repec.org/a/igg/jsds00/v2y2011i4p1-13.html
   My bibliography  Save this article

Determination of the Number of Clusters in a Data Set: A Stopping Rule × Clustering Algorithm Comparison

Author

Listed:
  • Derrick S. Boone

    (Wake Forest University - Schools of Business, USA)

Abstract

The accuracy of “stopping rules” for determining the number of clusters in a data set is examined as a function of the underlying clustering algorithm being used. Using a Monte Carlo study, various stopping rules, used in conjunction with six clustering algorithms, are compared to determine which rule/algorithm combinations best recover the true number of clusters. The rules and algorithms are tested using disparately sized, artificially generated data sets that contained multiple numbers and levels of clusters, variables, noise, outliers, and elongated and unequally sized clusters. The results indicate that stopping rule accuracy depends on the underlying clustering algorithm being used. The cubic clustering criterion (CCC), when used in conjunction with mixture models or Ward’s method, recovers the true number of clusters more accurately than other rules and algorithms. However, the CCC was more likely than other stopping rules to report more clusters than are actually present. Implications are discussed.

Suggested Citation

  • Derrick S. Boone, 2011. "Determination of the Number of Clusters in a Data Set: A Stopping Rule × Clustering Algorithm Comparison," International Journal of Strategic Decision Sciences (IJSDS), IGI Global, vol. 2(4), pages 1-13, October.
  • Handle: RePEc:igg:jsds00:v:2:y:2011:i:4:p:1-13
    as

    Download full text from publisher

    File URL: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/jsds.2011100101
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:igg:jsds00:v:2:y:2011:i:4:p:1-13. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Journal Editor (email available below). General contact details of provider: https://www.igi-global.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.